Region-based super-resolution for compression

  • D. Barreto
  • L. D. Alvarez
  • R. Molina
  • A. K. Katsaggelos
  • G. M. Callicó
Original Article


Every user of multimedia technology expects good image and video visual quality independently of the particular characteristics of the receiver or the communication networks employed. Unfortunately, due to factors like processing power limitations and channel capabilities, images or video sequences are often downsampled and/or transmitted or stored at low bitrates, resulting in a degradation of their final visual quality. In this paper, we propose a region-based framework for intentionally introducing downsampling of the high resolution (HR) image sequences before compression and then utilizing super resolution (SR) techniques for generating an HR video sequence at the decoder. Segmentation is performed at the encoder on groups of images to classify their blocks into three different types according to their motion and texture. The obtained segmentation is used to define the downsampling process at the encoder and it is encoded and provided to the decoder as side information in order to guide the SR process. All the components of the proposed framework are analyzed in detail. A particular implementation of it is described and tested experimentally. The experimental results validate the usefulness of the proposed method.


Side Information Video Compression Multidim Syst Sign IEEE Signal Processing Society Medium Bitrates 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alam M.S., Bognar J.G., Hardie R.C., Yasuda B.J. (2000) Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames. IEEE Transactions Instrumentation Measurement 49: 915–923CrossRefGoogle Scholar
  2. Barreto, D., Alvarez, L., & Abad, J. (2006). Motion estimation techniques in super-resolution image reconstruction. A performance evaluation. In: Virtual observatory. Plate content digitalization, archive mining and image sequence processing, Sofia, Bulgary, Vol. I, pp.254–268.Google Scholar
  3. Borman, S. (2004). Topics in multiframe superresolution restoration. Ph.D. dissertation, University of Notre Dame, Notre Dame, IN.Google Scholar
  4. Brown J. (1981) Multi-channel sampling of low pass signals. IEEE Transactions on Circuits and Systems 28: 101–106MATHCrossRefGoogle Scholar
  5. Callicó, G. M., Núnez, A., Llopis, R. P., & Sethuraman, R. (2003). Low-cost and real-time super-resolution over a video encoder ip. In: Fourth international symposium on quality electronic design (ISQED’03), Los Alamitos, CA, USA, pp.79–84.Google Scholar
  6. Capel, D., & Zisserman, A. (2001). Super-resolution from multiple views using learnt image models. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, Kauai, Hawaii USA, Vol. 2, pp.627–634.Google Scholar
  7. Chaudhuri S., Manjunath J. (2005) Motion-free super-resolution. Springer, BerlinMATHGoogle Scholar
  8. Erickson, K. J., & Schultz, R. R. (2000). Mpeg-1 super-resolution decoding for the analysis of video stills. In: Proceedings 4th IEEE southwest symposium image analysis, Austin, TX, pp.13–20.Google Scholar
  9. Farsiu S., Robinson D., Elad M., Milanfar P. (2004) Fast and robust multi-frame super-resolution. IEEE Transactions on Image Processing 13: 1327–1344CrossRefGoogle Scholar
  10. Freeman W.T., Jones T.R., Pasztor E.C. (2002) Example based super-resolution. IEEE Computer Graphics and Applications 22: 56–65CrossRefGoogle Scholar
  11. Gunturk B., Batur A., Altunbasak Y., Hayes M., Mersereau R. (2003) Eigenface-domain super-resolution for face recognition. IEEE Transactions on Image Processing 12: 597–606CrossRefGoogle Scholar
  12. “Information technology—generic coding of moving pictures and associated audio information: Video,” ISO/IEC 13818-2:2000, Tech. Rep., 2000.Google Scholar
  13. “Information technology—coding of audio-visual objects—part 2: Visual,” ISO/IEC 14496-2:2004, Tech. Rep., 2004.Google Scholar
  14. “Information technology—coding of audio-visual objects—part 10: Advanced video coding,” ISO/IEC 14496-10:2005, Tech. Rep., 2005.Google Scholar
  15. Karunaratne, P. V., Segall, C., & Katsaggelos, A. (2001). Rate distortion optimal video pre-processing algorithm. In: Proceedings of the IEEE international conference on image processing Thessaloniki, Greece, Vol. 1, pp. 481–484.Google Scholar
  16. Mardia K., Kent J., Bibby J. (1979) Multivariate analysis. Academic Press, New YorkMATHGoogle Scholar
  17. Mateos, J., Katsaggelos, A. K., & Molina, R. (2000). Simultaneous motion estimation and resolution enhancement of compressed low-resolution video. In: Proceedings IEEE international conference on image processing, Vancouver, B.C. Canada, Vol. 2, pp.653–656.Google Scholar
  18. Molina, R., Katsaggelos, A., Alvarez, L., & Mateos, J. (2006). Towards a new video compression scheme using super-resolution. In: Proceedings of the SPIE conference on visual communications and image processing, San Jose, CA, USA, Vol. 6077, pp.607706/1–607706/13.Google Scholar
  19. Molina, R., Mateos, J., & Katsaggelos, A. K. (2006). Super resolution reconstruction of multispectral images. In: Virtual observatory. Plate content digitalization, archive mining and image sequence processing, Sofia, Bulgary, Vol. I, pp.211–220.Google Scholar
  20. Nguyen, N., & Milanfar, P. (2000). Efficient wavelet-based algorithm for image superresolution. In: Proceedings of the IEEE international conference on image processing, Vancouver, B.C. Canada, Vol. 2, pp.351–354.Google Scholar
  21. Papoulis A. (1977) Generalized sampling theorem. IEEE Transactions on Circuits and Systems 24: 652–654MATHCrossRefMathSciNetGoogle Scholar
  22. Schultz R.R., Meng L., Stevenson R.L. (1998) Subpixel motion estimation for super-resolution image sequence enhancement. Journal of Visual Communication and Image Representation 9: 38–50CrossRefGoogle Scholar
  23. Segall, C. A., Elad, M., Milanfar, P., Webb, R., & Fogg, C. (2004). Improved high-definition video by encoding at an intermediate resolution. In: Proceedings of the SPIE conference on visual communications and image processing, San Jose, CA, USA, Vol. 5308, pp.1007–1018.Google Scholar
  24. Ur H., Gross D. (1992) Improved resolution from sub-pixel shifted pictures. CVGIP: Graphical Models and Image Processing 54: 181–186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • D. Barreto
    • 1
  • L. D. Alvarez
    • 2
  • R. Molina
    • 2
  • A. K. Katsaggelos
    • 3
  • G. M. Callicó
    • 1
  1. 1.Research Institute for Applied Microelectronics, IUMAUniversity of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  2. 2.Departamento de Ciencias de la Computación e I.AUniversidad de GranadaGranadaSpain
  3. 3.Department of Electrical Engineering and Computer ScienceNorthwestern UniversityEvanstonUSA

Personalised recommendations