Advertisement

Multidimensional Systems and Signal Processing

, Volume 18, Issue 4, pp 297–308 | Cite as

Using edge direction information for measuring blocking artifacts of images

  • F. Pan
  • X. Lin
  • S. Rahardja
  • E. P. Ong
  • W. S. Lin
Original Paper

Abstract

Block-based transform coding is the most popular approach for image and video compression. The objective measurement of blocking artifacts plays an important role in the design, optimization, and assessment of image and video coding systems. This paper presents a new algorithm for measuring blocking artifacts in images and videos. Instead of using the traditional pixel discontinuity along the block boundary, we use the edge directional information of the images. The new algorithm does not need the exact location of the block boundary thus is invariant to the displacement, rotation and scaling of the images. Experiments on various still images and videos show that the new blockiness measure is very efficient in terms of computational complexity and memory usage, and can produce blocking artifacts measurement consistent with subjective rating.

Keywords

Image compression Block-based transform coding Perceptual metrics Blocking artefacts Un-referenced metrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazen A.M., Gerez S.H. (2002). Systematic methods for the computation of the directional fields and singular points of fingerprints. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24: (7) 905–919CrossRefGoogle Scholar
  2. Gonzalez R.C., Woods R.E. (2002). Digital image processing. Englewood Cliffs, NJ: Prentice HallGoogle Scholar
  3. Karunasekera S.A., Kingsbury N.G. (1995) A distortion measure for blocking artifacts in images based on human visual sensitivity. IEEE Transactions on Image Processing, 4(6): 713–724CrossRefGoogle Scholar
  4. Kass M., Witkin A. (1987). Analyzing oriented patterns. Computer Vision, Graphics, and Image Processing, 37: 362–385CrossRefGoogle Scholar
  5. Miyahara M., Kotani K., Algazi V.R. (1998). Objective picture quality scale (PQS) for image coding. IEEE Transactions on Communications, 46(9): 1215–1225CrossRefGoogle Scholar
  6. Sheikh, H. R., Wang, Z., Cormack, L., Bovik, A. C. (2002). LIVE image quality assessment database, http://live.ece.utexas.edu/research/quality.Google Scholar
  7. Shi Y.Q., Sun H. (1999). Image and video compression for multimedia engineering – fundamentals, algorithms and standards. CRC Press, Boca RatonGoogle Scholar
  8. VQEG (2000). Final report from the video quality experts group on the validation of objective models of video quality assessment, http://www.vqeg.org/.Google Scholar
  9. Wang, Z., Sheikh, H. R., Bovik, A. C. (2002). No-reference perceptual quality assessment of JPEG compressed images. 2000 IEEE International Conference on Image Processing, Rochester, New York, September 22–25, I-477–480.Google Scholar
  10. Wu H.R., Yuen M. (1997) A generalized block-edge impairment metric for video coding. IEEE Signal Processing Letters, 4 (11): 317–320CrossRefGoogle Scholar
  11. Yu Z., Wu H.R., Winkler S., Chen T. (2002). Vision-model-based impairment metric to evaluate blocking artifacts in digital video. Proceedings of the IEEE, 90(1): 154–169CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • F. Pan
    • 1
  • X. Lin
    • 3
  • S. Rahardja
    • 3
  • E. P. Ong
    • 3
  • W. S. Lin
    • 2
  1. 1.ViXS Systems Inc.TorontoCanada
  2. 2.School of Computer EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Institute for Infocomm ResearchSingaporeSingapore

Personalised recommendations