Influence of the load modelling during gait on the stress distribution in a femoral implant

  • Benjamin Gervais
  • Aurelian Vadean
  • Myriam Brochu
  • Maxime Raison
Article
  • 30 Downloads

Abstract

Introduction

When designing and installing implants, stress analyses should be performed in conditions close to those of everyday use. Specifically, for femoral implants, cyclic loading during gait has been demonstrated to produce fatigue failure. However, there is still no consensus in the literature regarding which modelling procedure is the most appropriate to simulate implant working conditions. This work proposes a method for realistic load modelling of the human body during gait based on flexible multibody dynamics.

Method

The proposed dynamic method was applied to a case study of a lower limb implant that failed by fatigue. The computed stresses were compared to the stresses obtained using the other three methods found in the literature, which are principally based on static or quasi-static load modelling.

Results

For all compared methods, the maximum computed stress was located in the same region of the implant. The maximum stress provided using flexible multibody dynamics was equal to 346 MPa, which was 355% greater than the maximum value given by the static method and 18% greater than the value given by the quasi-static method.

Discussion and conclusion

The proposed dynamic method was in agreement with the conclusions of the previous failure analysis performed on the broken implant. Conversely, the static and quasi-static methods were not representative of the real loading conditions induced by gait. Moreover, the dynamic method emphasizes the pertinence of evaluating the fluctuations in the critical stress during the gait cycle, which is mandatory when studying fatigue failures.

Keywords

Flexible multibody dynamics Fatigue Finite element analysis Locking compression plate Component mode synthesis Craig–Bampton 

Notes

Acknowledgements

This study was funded by the Fonds de recherche du Québec—Nature et technologies (FRQNT) and the Fondation de Polytechnique Montreal. The authors acknowledge Ms. Audrey Parent for her contribution to the clinical gait analysis.

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

References

  1. 1.
    Pohler, O.E.M.: Failures of metallic orthopedic implants. In: ASM Handbook, Volume 11: Failure Analysis and Prevention, pp. 670–694. ASM International, Materials Park (1986) Google Scholar
  2. 2.
    Food, Administration, D.: Bringing an innovative device to market: premarket approval (PMA) of medical devices (2014) Google Scholar
  3. 3.
    Wang, X., Wang, T., Jiang, F., Duan, Y.: The hip stress level analysis for human routine activities. Biomed. Eng. Appl. Basis Commun. 17, 153–158 (2005) CrossRefGoogle Scholar
  4. 4.
    Lee, I.-M., Buchner, D.M.: The importance of walking to public health. Med. Sci. Sports Exerc. 40, S512–518 (2008) CrossRefGoogle Scholar
  5. 5.
    Arnone, J.C., Sherif El-Gizawy, A., Crist, B.D., Della Rocca, G.J., Ward, C.V.: Computer-aided engineering approach for parametric investigation of locked plating systems design. J. Med. Devices 7, 021001 (2013) CrossRefGoogle Scholar
  6. 6.
    Rankovic, C., Ristic, B., Kojic, M.: Internal fixation of femoral bone comminuted fracture—FE analysis. J. Serb. Soc. Comput. Mech. 1, 120–128 (2007) Google Scholar
  7. 7.
    Wang, G., Wang, D., Mao, J., Lin, Y., Yin, Z., Wang, B., He, Y., Sun, S.: Three dimensional finite-element analysis of treating Vancouver B1 periprosthetic femoral fractures with three kinds of internal fixation. Int. J. Clin. Exp. Med. 9, 7557–7564 (2016) Google Scholar
  8. 8.
    Chen, S.-H., Chiang, M.-C., Hung, C.-H., Lin, S.-C., Chang, H.-W.: Finite element comparison of retrograde intramedullary nailing and locking plate fixation with/without an intramedullary allograft for distal femur fracture following total knee arthroplasty. Knee 21, 224–231 (2014) CrossRefGoogle Scholar
  9. 9.
    Anitha, D., De, S.D., Sun, K.K., Doshi, H.K., Lee, T.: Improving stability of locking compression plates through a design modification: a computational investigation. Comput. Methods Biomech. Biomed. Eng. 18, 153–161 (2015) CrossRefGoogle Scholar
  10. 10.
    Bergmann, G., Deuretzbacher, G., Heller, M., Graichen, F., Rohlmann, A., Strauss, J., Duda, G.N.: Hip contact forces and gait patterns from routine activities. J. Biomech. 34, 859–871 (2001) CrossRefGoogle Scholar
  11. 11.
    Chen, G., Schmutz, B., Wullschleger, M., Pearcy, M.J., Schuetz, M.A.: Computational investigations of mechanical failures of internal plate fixation. Proc. Inst. Mech. Eng., H J. Eng. Med. 224, 119–126 (2010) CrossRefGoogle Scholar
  12. 12.
    MacLeod, A.R., Pankaj, P., Simpson, A.H.R.W.: Does screw–bone interface modelling matter in finite element analyses? J. Biomech. 45, 1712–1716 (2012) CrossRefGoogle Scholar
  13. 13.
    Cegoñino, J., García Aznar, J.M., Doblaré, M., Palanca, D., Seral, B., Seral, F.: A comparative analysis of different treatments for distal femur fractures using the finite element method. Comput. Methods Biomech. Biomed. Eng. 7, 245–256 (2004) CrossRefGoogle Scholar
  14. 14.
    Nobari, S., Katoozian, H.R., Zomorodimoghadam, S.: Three-dimensional design optimisation of patient-specific femoral plates as a means of bone remodelling reduction. Comput. Methods Biomech. Biomed. Eng. 13, 819–827 (2010) CrossRefGoogle Scholar
  15. 15.
    Wang, C.J., Yettram, A.L., Yao, M.S., Procter, P.: Finite element analysis of a Gamma nail within a fractured femur. Med. Eng. Phys. 20, 677–683 (1998) CrossRefGoogle Scholar
  16. 16.
    Kłodowski, A., Rantalainen, T., Mikkola, A., Heinonen, A., Sievänen, H.: Flexible multibody approach in forward dynamic simulation of locomotive strains in human skeleton with flexible lower body bones. Multibody Syst. Dyn. 25, 395–409 (2011) CrossRefMATHGoogle Scholar
  17. 17.
    Kłodowski, A., Valkeapää, A., Mikkola, A.: Pilot study on proximal femur strains during locomotion and fall-down scenario. Multibody Syst. Dyn. 28, 239–256 (2012) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kłodowski, A., Rantalainen, T., Heinonen, A., Sievänen, H., Mikkola, A.: The use of the flexible multibody approach for lower body skeletal loading analysis. In: IUTAM Symposium on Human Body Dynamics, vol. 2, pp. 93–100 (2011) Google Scholar
  19. 19.
    Nazer, R., Kłodowski, A., Rantalainen, T., Heinonen, A., Sievänen, H., Mikkola, A.: A full body musculoskeletal model based on flexible multibody simulation approach utilised in bone strain analysis during human locomotion. Comput. Methods Biomech. Biomed. Eng. 14, 573–579 (2011) CrossRefMATHGoogle Scholar
  20. 20.
    Nazer, R., Kłodowski, A., Rantalainen, T., Heinonen, A., Sievänen, H., Mikkola, A.: Analysis of dynamic strains in tibia during human locomotion based on flexible multibody approach integrated with magnetic resonance imaging technique. Multibody Syst. Dyn. 20, 287–306 (2008) CrossRefMATHGoogle Scholar
  21. 21.
    Nazer, R., Rantalainen, T., Heinonen, A., Sievänen, H., Mikkola, A.: Flexible multibody simulation approach in the analysis of tibial strain during walking. J. Biomech. 41, 1036–1043 (2008) CrossRefMATHGoogle Scholar
  22. 22.
    Gervais, B., Vadean, A., Raison, M., Brochu, M.: Failure analysis of a 316L stainless steel femoral orthopedic implant. Case Stud. Eng. Fail. Anal. 5–6, 30–38 (2016) CrossRefGoogle Scholar
  23. 23.
    Université libre de Bruxelles, Virtual Animation of the Kinematics of the Human for Industrial, Educational and Research Purposes, Vakhum Public Dataset (2003). http://www.ulb.ac.be/project/vakhum/ (accessed November 24, 2016)
  24. 24.
    Croker, S.L., Clement, J.G., Donlon, D.: A comparison of cortical bone thickness in the femoral midshaft of humans and two non-human mammals. HOMO J. Comp. Hum. Biol. 60, 551–565 (2009) CrossRefGoogle Scholar
  25. 25.
    Turner, C.H., Rho, J., Takano, Y., Tsui, T.Y., Pharr, G.M.: The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J. Biomech. 32, 437–441 (1999) CrossRefGoogle Scholar
  26. 26.
    Perren, S.M., Fernandez, A., Regazzoni, P.: Understanding fracture healing biomechanics based on the “strain” concept and its clinical applications. Acta Chir. Orthop. Traumatol. Čechoslov. 82, 253–260 (2015) Google Scholar
  27. 27.
    Hoppenfeld, S., Murthy, V.L.: Treatment and Rehabilitation of Fractures. Williams & Wilkins, Baltimore (2000) Google Scholar
  28. 28.
    Herman, I.P.: Physics of the Human Body. Springer, Berlin (2007) CrossRefGoogle Scholar
  29. 29.
    Narayan, R.J.: Medical application of stainless steels. In: ASM Handbook, Volume 23: Materials for Medical Devices, pp. 199–210. ASM International, Materials Park (2012) Google Scholar
  30. 30.
    Davis, R.B., Õunpuu, S., Tyburski, D., Gage, J.R.: A gait analysis data collection and reduction technique. Hum. Mov. Sci. 10, 575–587 (1991) CrossRefGoogle Scholar
  31. 31.
    Lu, T.W., O’Connor, J.J.: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 32, 129–134 (1999) CrossRefGoogle Scholar
  32. 32.
    Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley, New York (2009) CrossRefGoogle Scholar
  33. 33.
    Neckel, N.D., Blonien, N., Nichols, D., Hidler, J.: Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern. J. NeuroEng. Rehabil. 5, 19 (2008) CrossRefGoogle Scholar
  34. 34.
    Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D’Lima, D.D., Cristofolini, L., Witte, H., Schmid, O., Stokes, I.: Standardization and Terminology Committee of the International Society of Biomechanics, ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—Part I: Ankle, hip, and spine. Int. Soc. Biomech. J. Biomech. 35, 543–548 (2002) CrossRefGoogle Scholar
  35. 35.
    Bampton, M.C.C., Craig, R.R.: Coupling of substructures for dynamic analyses. AIAA J. 6, 1313–1319 (1968) CrossRefMATHGoogle Scholar
  36. 36.
    Speirs, A.D., Heller, M.O., Duda, G.N., Taylor, W.R.: Physiologically based boundary conditions in finite element modelling. J. Biomech. 40, 2318–2323 (2007) CrossRefGoogle Scholar
  37. 37.
    Vallier, H.A., Hennessey, T.A., Sontich, J.K., Patterson, B.M.: Failure of LCP condylar plate fixation in the distal part of the femur. A report of six cases. J. Bone Jt. Surg., Am. Vol. 88, 846–853 (2006) Google Scholar
  38. 38.
    Garijo, N., Verdonschot, N., Engelborghs, K., García-Aznar, J.M., Pérez, M.A.: Subject-specific musculoskeletal loading of the tibia: computational load estimation. J. Mech. Behav. Biomed. Mater. 65, 334–343 (2017) CrossRefGoogle Scholar
  39. 39.
    Bathe, K.-J., Dong, J.: Component mode synthesis with subspace iterations for controlled accuracy of frequency and mode shape solutions. Comput. Struct. 139, 28–32 (2014) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringPolytechnique MontrealMontréalCanada
  2. 2.Research Center CRME—Ste-Justine UHCMontréalCanada

Personalised recommendations