Advertisement

Multibody System Dynamics

, Volume 42, Issue 3, pp 317–345 | Cite as

A unified formulation for mechanical joints with and without clearances/bushings and/or stops in the framework of multibody systems

Article

Abstract

Virtually all machines and mechanisms use mechanical joints that are not perfect from the kinematic point of view and for which tolerances, in the fitting of their components, are specified. Together with such controlled clearances, mechanical joints may require the use of bushing elements, such as those used in vehicle suspensions. Furthermore, in many situations the joints exhibit limits (stops) in their translational or rotational motion that have to be taken into account when modeling them. The dynamic response of the mechanical systems that use such realistic mechanical joints is largely dependent on their characteristic dimensions and material properties of the compliant elements, implying that correct models of these systems must include realistic models of the bushing/clearance joints and of the joint stops. Several works addressed the modeling of imperfect joints to account for the existence of clearances and bushings, generally independently of the formulation of the perfect kinematic joints. This work proposes a formulation in which both perfect and clearance/bushing joints share the same kinematic information making their modeling data similar and enabling their easy permutation in the context of multibody systems modeling. The proposed methodology is suitable for the most common mechanical joints and easily extended to many other joint types benefiting the exploration of a wide number of modeling applications, including the representation of cut-joints required for some formulations in multibody dynamics. The formulation presented in this work is applied to several demonstrative examples of spatial mechanisms to show the need to consider the type of imperfect joints and/or joints with stops modeling in practical applications.

Keywords

Kinematic joints Clearance joints Bushing joints Constraint violation Joint stops Numerical efficiency 

Notes

Acknowledgements

This work was supported by FCT, through IDMEC, under LAETA, project UID/EMS/ 50022/2013.

References

  1. 1.
    Akhadkar, N., Acary, V., Brogliato, B.: Analysis of collocated feedback controllers for four-bar planar mechanisms with joint clearances. Multibody Syst. Dyn. 38(2), 101–136 (2016).  https://doi.org/10.1007/s11044-016-9523-x MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Akhadkar, N., Acary, V., Brogliato, B.: Multibody systems with 3D revolute joints with clearances: an industrial case study with an experimental validation. Multibody Syst. Dyn. (2017).  https://doi.org/10.1007/s11044-017-9584-5 Google Scholar
  3. 3.
    Ambrosio, J., Verissimo, P.: Improved bushing models for vehicle dynamics. Multibody Syst. Dyn. 22(4), 341–365 (2009) CrossRefMATHGoogle Scholar
  4. 4.
    Ambrosio, J., Malça, C., Ramalho, A.: Planar roller chain drive dynamics using a cylindrical contact force model. Mech. Based Des. Struct. Mach. 44(1–2), 109–122 (2015).  https://doi.org/10.1080/15397734.2015.1087319 Google Scholar
  5. 5.
    Ambrosio, J., Pombo, J.: MUltiBOdy Dynamic analysis program—MUBODyn: User’s Manual. Technical Report IDMEC-CPM, Instituto de Engenharia Mecânica, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal (2016) Google Scholar
  6. 6.
    Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ben-Abdallah, M.A., Khemili, I., Aifaoui, N.: Numerical investigation of a flexible slider–crank mechanism with multijoints with clearance. Multibody Syst. Dyn. 38(2), 173–199 (2016).  https://doi.org/10.1007/s11044-016-9526-7 CrossRefGoogle Scholar
  8. 8.
    Bozzone, M., Pennestrì, E., Salvini, P.: A lookup table-based method for wheel–rail contact analysis. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 225(2), 127–138 (2011).  https://doi.org/10.1177/2041306810394721 MATHGoogle Scholar
  9. 9.
    Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control. Springer, Cham (2016) CrossRefMATHGoogle Scholar
  10. 10.
    Brutti, C., Coglitore, G., Valentini, P.: Modeling 3D revolute joint with clearance and contact stiffness. Nonlinear Dyn. 66(4), 531–548 (2011) CrossRefGoogle Scholar
  11. 11.
    Dubowsky, S.: On predicting the dynamic effects of clearances in planar mechanisms. J. Eng. Ind., Ser. B 96(1), 317–323 (1974) CrossRefGoogle Scholar
  12. 12.
    Dubowsky, S., Gardner, T.N.: Design and analysis of multilink flexible mechanism with multiple clearance connections. J. Eng. Ind., Ser. B 99(1), 88–96 (1977) CrossRefGoogle Scholar
  13. 13.
    Duff, I., Erisman, A., Reid, J.: Direct Methods for Sparse Matrices. Clarendon Press, Oxford (1986) MATHGoogle Scholar
  14. 14.
    Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82(17–18), 1359–1369 (2004) CrossRefGoogle Scholar
  15. 15.
    Flores, P., Ambrosio, J., Claro, J., Lankarani, H.: Spatial revolute joints with clearances for dynamic analysis of multi-body systems. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 220(4), 257–271 (2006).  https://doi.org/10.1243/1464419JMBD70 Google Scholar
  16. 16.
    Flores, P., Ambrósio, J., Pimenta Claro, J., Lankarani, H.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints: Models and Case Studies. Springer, Dordrecht (2008) MATHGoogle Scholar
  17. 17.
    Flores, P., Ambrosio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24(1), 103–122 (2010).  https://doi.org/10.1007/s11044-010-9209-8 MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23(2), 165–190 (2010).  https://doi.org/10.1007/s11044-009-9178-y MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Flores, P., Lankarani, H.: Contact Force Models for Multibody Dynamics. Springer, Dordrecht (2016) CrossRefGoogle Scholar
  20. 20.
    Förg, M., Pfeiffer, F., Ulbrich, H.: Simulation of unilateral constrained systems with many bodies. Multibody Syst. Dyn. 14(2), 137–154 (2005).  https://doi.org/10.1007/s11044-005-0725-x MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Gear, G.: Numerical simulation of differential-algebraic equations. IEE Transl. Circuit Theory CT-18, 89–95 (1981) Google Scholar
  22. 22.
    Glocker, C., Studer, C.: Formulation and preparation for numerical evaluation of linear complementarity systems in dynamics. Multibody Syst. Dyn. 13(4), 447–463 (2005).  https://doi.org/10.1007/s11044-005-2519-6 MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Grant, S.J., Fawcett, J.N.: Effects of clearance at the coupler-rocker bearing of a 4-bar linkage. Mech. Mach. Theory 14, 99–110 (1979) CrossRefGoogle Scholar
  24. 24.
    Gummer, A., Sauer, B.: Modeling planar slider–crank mechanisms with clearance joints in RecurDyn. Multibody Syst. Dyn. 31(2), 127–145 (2014).  https://doi.org/10.1007/s11044-012-9339-2 CrossRefGoogle Scholar
  25. 25.
    Gupta, P.K.: Advanced Dynamics of Rolling Elements. Springer, Heidelberg (1984) CrossRefGoogle Scholar
  26. 26.
    Haines, R.S.: An experimental investigation into the dynamic behaviour of revolute joints with varying degrees of clearance. Mech. Mach. Theory 20(3), 221–231 (1985) CrossRefGoogle Scholar
  27. 27.
    Hippmann, G.: An algorithm for compliant contact between complexly shaped bodies. Multibody Syst. Dyn. 12(4), 345–362 (2004).  https://doi.org/10.1007/s11044-004-2513-4 MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Lankarani, H., Nikravesh, P.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994) Google Scholar
  29. 29.
    Ledesma, R., Ma, Z., Hulbert, G., Wineman, A.: A nonlinear viscoelastic bushing element in multi-body dynamics. Comput. Mech. 17, 287–296 (1996) CrossRefMATHGoogle Scholar
  30. 30.
    Li, P., Chen, W., Li, D., et al.: A novel transition model for lubricated revolute joints in planar multibody systems. Multibody Syst. Dyn. 36(3), 279–294 (2016).  https://doi.org/10.1007/s11044-015-9484-5 MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Lopes, D.S., Silva, M.T., Ambrosio, J.A.: Tangent vectors to a 3-d surface normal: a geometric tool to find orthogonal vectors based on the householder transformation. Comput. Aided Des. 45(3), 683–694 (2013).  https://doi.org/10.1016/j.cad.2012.11.003 MathSciNetCrossRefGoogle Scholar
  32. 32.
    Machado, M., Flores, P., Ambrosio, J.: A lookup-table-based approach for spatial analysis of contact problems. J. Comput. Nonlinear Dyn. 9(4), 041010 (2014).  https://doi.org/10.1115/1.4026894 CrossRefGoogle Scholar
  33. 33.
    Magalhaes, H., Ambrosio, J., Pombo, J.: Railway vehicle modelling for the vehicle-track interaction compatibility analysis. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 230(3), 251–267 (2016).  https://doi.org/10.1177/1464419315608275 Google Scholar
  34. 34.
    Marques, F., Flores, P., Pimenta Claro, J., Lankarani, H.M.: Survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. (2016).  https://doi.org/10.1007/s11071-016-2999-3 MathSciNetGoogle Scholar
  35. 35.
    Masoudi, R., Uchida, T., Vilela, D., Luaces, A., Cuadrado, J., McPhee, J.: A library of computational benchmark problems for the multibody dynamics community. In: Terze, Z. (ed.) Proceedings of ECCOMAS Multibody Dynamics 2013, 1–4 July, University of Zagreb, Croatia, pp. 1153–1162 (2013) Google Scholar
  36. 36.
    Mazhar, H., Heyn, T., Negrut, D.: A scalable parallel method for large collision detection problems. Multibody Syst. Dyn. 26(1), 37–55 (2011).  https://doi.org/10.1007/s11044-011-9246-y CrossRefMATHGoogle Scholar
  37. 37.
    Nikravesh, P.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs (1988) Google Scholar
  38. 38.
    Park, J., Nikravesh, P.: Effect of steering-housing rubber bushings on the handling responses of a vehicle. SAE Trans. J. Passeng. Cars 106(6), 76–86 (1998) Google Scholar
  39. 39.
    Pereira, C., Ramalho, A., Ambrosio, J.: A critical overview of internal and external cylinder contact force models. Nonlinear Dyn. 63(4), 681–697 (2011) CrossRefGoogle Scholar
  40. 40.
    Pereira, C., Ramalho, A., Ambrosio, J.: Dynamics of chain drives using a generalized revolute clearance joint formulation. Mech. Mach. Theory 92, 64–85 (2015).  https://doi.org/10.1016/j.mechmachtheory.2015.04.021 CrossRefGoogle Scholar
  41. 41.
    Pereira, C., Ramalho, A., Ambrosio, J.: An enhanced cylindrical contact force model. Multibody Syst. Dyn. 35(3), 277–298 (2015).  https://doi.org/10.1007/s11044-015-9463-x CrossRefMATHGoogle Scholar
  42. 42.
    Pombo, J., Ambrósio, J.: General spatial curve joint for rail guided vehicles: kinematics and dynamics. Multibody Syst. Dyn. 9(3), 237–264 (2003) CrossRefMATHGoogle Scholar
  43. 43.
    Pombo, J., Ambrósio, J., Silva, M.: A new wheel–rail contact model for railway dynamics. Veh. Syst. Dyn. 45(2), 165–189 (2007) CrossRefGoogle Scholar
  44. 44.
    Ravn, P.: A continuous analysis method for planar multibody systems with joint clearance. Multibody Syst. Dyn. 2, 1–24 (1998) CrossRefMATHGoogle Scholar
  45. 45.
    Robuschi, N., Braghin, F., Corigliano, A., Ghisi, A., Tasora, A.: On the dynamics of a high frequency oscillator for mechanical watches. Mech. Mach. Theory 117, 276–293 (2017) CrossRefGoogle Scholar
  46. 46.
    Schwab, A.L., Meijaard, J.P., Meijers, P.: A comparison of revolute joint clearance models in the dynamic analysis of rigid and elastic mechanical systems. Mech. Mach. Theory 37, 895–913 (2002) CrossRefMATHGoogle Scholar
  47. 47.
    Soong, K., Thompson, B.S.: A theoretical and experimental investigation of the dynamic response of a slider–crank mechanism with radial clearance in the gudgeon-pin joint. J. Mech. Des. 112, 183–189 (1990) CrossRefGoogle Scholar
  48. 48.
    Tandl, M., Kecskemethy, A.: Singularity-free trajectory tracking with Frenet frames. In: Husty, M., Schroeker, H-P. (eds.) Proceedings of the 1st Conference EuCoMeS. Obergurgl, Austria (2006) Google Scholar
  49. 49.
    Tian, Q., Xiao, Q., Sun, Y., Hu, H., Liu, H., Flores, P.: Coupling dynamics of a geared multibody system supported by ElastoHydroDynamic lubricated cylindrical joints. Multibody Syst. Dyn. 33(3), 259–284 (2015) MathSciNetCrossRefGoogle Scholar
  50. 50.
    Vieira, R.: High Speed Train Pantograph Models Identification. M.Sc. Thesis, Instituto Superior Tecnico, University of Lisbon, Lisbon, Portugal (2016) Google Scholar
  51. 51.
    Yaqubi, S., Dardel, M., Daniali, H.M., et al.: Modeling and control of crank–slider mechanism with multiple clearance joints. Multibody Syst. Dyn. 36(2), 143–167 (2016).  https://doi.org/10.1007/s11044-015-9486-3 MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Yan, S., Xiang, W., Zhang, L.: A comprehensive model for 3D revolute joints with clearances in mechanical systems. Nonlinear Dyn. 80(1), 309–328 (2015) CrossRefGoogle Scholar
  53. 53.
    Zhang, J., Wang, Q.: Modeling and simulation of a frictional translational joint with a flexible slider and clearance. Multibody Syst. Dyn. 38(4), 367–389 (2016).  https://doi.org/10.1007/s11044-015-9474-7 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.IDMEC, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.School of Energy, Geoscience, Infrastructure & SocietyHeriot-Watt UniversityEdinburghUK

Personalised recommendations