Multibody System Dynamics

, Volume 42, Issue 3, pp 347–379 | Cite as

Analytic solution for planar indeterminate impact problems using an energy constraint

  • Abhishek Chatterjee
  • Adrian Rodriguez
  • Alan Bowling


This work proposes an analytic method for resolving planar multi-point indeterminate impact problems for rigid-body systems. An event-based approach is used to detect impact events, and constraints consistent with the rigid-body assumption are used to resolve the indeterminacy associated with multi-point impact analysis. The work-energy relation is utilized to determine post-impact velocities based on an energetic coefficient of restitution to model energy dissipation, thereby yielding an energetically consistent set of post-impact velocities based on Stronge’s energetic coefficient of restitution for the treatment of rigid impacts. The effect of stick–slip transition is analyzed based on Coulomb friction. This paper also discusses the transition from impact to contact. This analysis is essential for considering the rocking block problem that is used as an example herein. The predictions of the model for the rocking block problem are compared to experimental results published in the literature. An example of a planar ball undergoing two-point impact is also presented.


Contact Impact Multibody dynamics Friction Energetic constraints Rigid body constraints 


  1. 1.
    Djerassi, S.: Collision with friction; Part B: Poisson’s and Stronge’s hypotheses. Multibody Syst. Dyn. 21(1), 55–70 (2009) MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Song, P., Krauss, P., Dupont, P.: Analysis of rigid-body dynamic models for simulation of systems with frictional contacts. J. Appl. Mech. 68(1), 118–128 (2000) CrossRefGoogle Scholar
  3. 3.
    Gonthier, Y., McPhee, J., Lange, C., Piedboeuf, J.-C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11(3), 209–233 (2004) CrossRefMATHGoogle Scholar
  4. 4.
    Sharf, I., Zhang, Y.: A contact force solution for non-colliding contact dynamics simulation. Multibody Syst. Dyn. 16(3), 263–290 (2006) MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Anitescu, M., Potra, F.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14(3), 231–247 (1997) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chatterjee, A.: On the realism of complementarity conditions in rigid body collisions. Nonlinear Dyn. 20(2), 159–168 (1999) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Lankarani, H.: Contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112(3), 369–376 (1990) CrossRefGoogle Scholar
  8. 8.
    Gilardi, G., Sharf, I.: Literature survey of contact dynamics modeling. Mech. Mach. Theory 37(10), 1213–1239 (2002) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control, 2nd edn. Springer, London (1999) CrossRefMATHGoogle Scholar
  10. 10.
    Leine, R., Van de Wouw, N.: Stability and Convergence of Mechanical Systems with Unilateral Constraints, vol. 36. Springer, Berlin (2007) MATHGoogle Scholar
  11. 11.
    Keller, J.: Impact with friction. J. Appl. Mech. 53(1), 1–4 (1986) MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Stronge, W.: Smooth dynamics of oblique impact with friction. Int. J. Impact Eng. 51, 36–49 (2013) CrossRefGoogle Scholar
  13. 13.
    Bergés, P., Bowling, A.: Rebound, slip, and compliance in the modeling and analysis of discrete impacts in legged locomotion. J. Vib. Control 17(12), 1407–1430 (2006) MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Djerassi, S.: Stronge’s hypothesis-based solution to the planar collision-with-friction problem. Multibody Syst. Dyn. 24(4), 493–515 (2010) MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Rodriguez, A., Bowling, A.: Solution to indeterminate multi-point impact with frictional contact using constraints. Multibody Syst. Dyn. 28(4), 313–330 (2012) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang, Y., Kumar, V., Abel, J.: Dynamics of rigid bodies undergoing multiple frictional contacts. In: Proc-IEEE Int’l Conference on Robotics and Automation, vol. 3, pp. 2764–2769 (1992) Google Scholar
  17. 17.
    Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. I. Theoretical framework. Proc. R. Soc. A, Math. Phys. Eng. Sci. 464(2100), 3193–3211 (2008) MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Zhao, Z., Liu, C., Brogliato, B.: Planar dynamics of a rigid body system with frictional impacts. II. Qualitative analysis and numerical simulations. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465(2107), 2267–2292 (2009) MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Brake, M.: An analytical elastic-perfectly plastic contact model. Int. J. Solids Struct. 49(22), 3129–3141 (2012) CrossRefGoogle Scholar
  20. 20.
    Jackson, R.L., Green, I., Marghitu, D.B.: Predicting the coefficient of restitution of impacting elastic-perfectly plastic spheres. Nonlinear Dyn. 60(3), 217–229 (2010) CrossRefMATHGoogle Scholar
  21. 21.
    Zait, Y., Zolotarevsky, V., Kligerman, Y., Etsion, I.: Multiple normal loading-unloading cycles of a spherical contact under stick contact condition. J. Tribol. 132(4), 041401 (2010) CrossRefGoogle Scholar
  22. 22.
    Kane, T., Levinson, D.: Dynamics: Theory and Applications. McGraw-Hill, New York (1985) Google Scholar
  23. 23.
    Marghitu, D., Stoenescu, E.: Rigid body impact with moment of rolling friction. Nonlinear Dyn. 50(3), 597–608 (2007) MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Boulanger, G.: Sur le choc avec frottement des corps non parfaitement élastiques. Rev. Sci. 77, 325–327 (1939) MATHGoogle Scholar
  25. 25.
    Routh, E.J., et al.: Dynamics of a System of Rigid Bodies. Dover, New York (1960) MATHGoogle Scholar
  26. 26.
    Stronge, W.: Impact Mechanics. Cambridge University Press, Cambridge (2000) CrossRefMATHGoogle Scholar
  27. 27.
    Najafabadi, S., Kovecses, J., Angeles, J.: Generalization of the energetic coefficient of restitution for contacts in multibody systems. J. Comput. Nonlinear Dyn. 3(4), 70–84 (2008) CrossRefGoogle Scholar
  28. 28.
    Yilmaz, C., Gharib, M., Hurmuzlu, Y.: Solving frictionless rocking block problem with multiple impacts. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465(2111), 3323–3339 (2009) MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Zhao, Z., Liu, C., Brogliato, B.: Planar dynamics of a rigid body system with frictional impacts. II. Qualitative analysis and numerical simulations. Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 465(2107), 2267–2292 (2009) MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Jackson, R., Green, I., Marghitu, D.: Predicting the coefficient of restitution of impacting elastic-perfectly plastic spheres. Nonlinear Dyn. 60(3), 217–229 (2010) CrossRefMATHGoogle Scholar
  31. 31.
    Brach, R.: Formulation of rigid body impact problems using generalized coefficients. Int. J. Eng. Sci. 36(1), 61–71 (1998) MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Rodriguez, A., Bowling, A.: Study of Newton’s cradle using a new discrete approach. Multibody Syst. Dyn. 33(1), 61–92 (2015) MathSciNetCrossRefGoogle Scholar
  33. 33.
    Brogliato, B., Ten Dam, A., et al.: Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. Appl. Mech. Rev. 55(2), 107–149 (2002) CrossRefGoogle Scholar
  34. 34.
    Glocker, C., Studer, C.: Formulation and preparation for numerical evaluation of linear complementarity systems in dynamics. Multibody Syst. Dyn. 13(4), 447–463 (2005) MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Mouri, T., Yamada, T., Iwai, A., Mimura, N., Funahashi, Y.: Identification of contact conditions from contaminated data of contact force and moment. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 1, pp. 597–603 (2001) Google Scholar
  36. 36.
    Bowling, A.: Dynamic performance, mobility, and agility of multi-legged robots. J. Dyn. Syst. Meas. Control 128(4), 765–777 (2006) CrossRefGoogle Scholar
  37. 37.
    Karnopp, D.: Computer simulation of stick–slip friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control 107(1), 100–103 (1985) CrossRefGoogle Scholar
  38. 38.
    Haessig, D., Friedland, B.: On the modeling and simulation of friction. Am. Control 113(3), 354–362 (1991) Google Scholar
  39. 39.
    Han, I., Gilmore, B.: Multi-body impact motion with friction-analysis, simulation, and experimental validation. J. Mech. Des. 115(3), 412–422 (1993) CrossRefGoogle Scholar
  40. 40.
    Zhang, F., Yeddanapudi, M., Mosterman, P.J.: Zero-crossing location and detection algorithms for hybrid system simulation. IFAC Proc. Vol. 41(2), 7967–7972 (2008) CrossRefGoogle Scholar
  41. 41.
    Mosterman, P.J.: An overview of hybrid simulation phenomena and their support by simulation packages. In: International Workshop on Hybrid Systems: Computation and Control, pp. 165–177. Springer, Berlin (1999) CrossRefGoogle Scholar
  42. 42.
    Utkin, V.: Chattering problem. IFAC Proc. Vol. 44(1), 13374–13379 (2011) CrossRefGoogle Scholar
  43. 43.
    Aljarbouh, A., Caillaud, B.: Chattering-free simulation of hybrid dynamical systems with the functional mock-up interface 2.0. In: The First Japanese Modelica Conferences, vol. 124(013), pp. 95–105 (2016) Google Scholar
  44. 44.
    Pennestrı, V.P., Valentini, P.: Coordinate reduction strategies in multibody dynamics: a review. In: Proceedings of the Conference on Multibody System Dynamics (2007) Google Scholar
  45. 45.
    Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2008) CrossRefGoogle Scholar
  46. 46.
    Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972) MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Ostermeyer, G.-P.: On Baumgarte stabilization for differential algebraic equations. In: Real-Time Integration Methods for Mechanical System Simulation, pp. 193–207. Springer, Berlin (1990) CrossRefGoogle Scholar
  48. 48.
    Nikravesh, C., Nikravesh, P.: An adaptive constraint violation stabilization method for dynamic analysis of mechanical systems. J. Mech. Transm. Autom. Des. 107, 488–492 (1985) CrossRefGoogle Scholar
  49. 49.
    Park, K., Chiou, J.: Stabilization of computational procedures for constrained dynamical systems. J. Guid. Control Dyn. 11(4), 365–370 (1988) MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Bayo, E., De Jalon, J.G., Serna, M.A.: A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput. Methods Appl. Mech. Eng. 71(2), 183–195 (1988) MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Wehage, R., Haug, E.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104(1), 247–255 (1982) CrossRefGoogle Scholar
  52. 52.
    García de Jalón, J., Unda, J., Avello, A., Jiménez, J.: Dynamic analysis of three-dimensional mechanisms in “natural” coordinates. J. Mech. Transm. Autom. Des. 109(4), 460–465 (1987) CrossRefMATHGoogle Scholar
  53. 53.
    Liang, C., Lance, G.M.: A differentiable null space method for constrained dynamic analysis. J. Mech. Transm. Autom. Des. 109(3), 405–411 (1987) CrossRefGoogle Scholar
  54. 54.
    Kim, S., Vanderploeg, M.: Qr decomposition for state space representation of constrained mechanical dynamic systems. J. Mech. Trans 108(2), 183–188 (1986) CrossRefGoogle Scholar
  55. 55.
    Amirouche, F., Ider, S.: Coordinate reduction in the dynamics of constrained multibody systems-a new approach. J. Appl. Mech. 55, 899 (1988) MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Righetti, L., Buchli, J., Mistry, M., Schaal, S.: Inverse dynamics control of floating-base robots with external constraints: a unified view. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1085–1090. IEEE Press, New York (2011) Google Scholar
  57. 57.
    Mistry, M., Buchli, J., Schaal, S.: Inverse dynamics control of floating base systems using orthogonal decomposition. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3406–3412. IEEE Press, New York (2010) Google Scholar
  58. 58.
    Shampine, L.F., Reichelt, M.W.: The Matlab ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997) MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Dormand, J., Prince, P.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980) MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23(2), 165–190 (2010) MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Choi, J., Ryu, H., Kim, C., Choi, J.: An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometry. Multibody Syst. Dyn. 23(1), 99–120 (2010) CrossRefMATHGoogle Scholar
  62. 62.
    Lopes, D., Silva, M., Ambrosio, J., Flores, P.: A mathematical framework for contact detection between quadric and superquadric surfaces. Multibody Syst. Dyn. 24(3), 255–280 (2010) MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Zhang, H., Brogliato, B., Liu, C.: Dynamics of planar rocking-blocks with Coulomb friction and unilateral constraints: comparisons between experimental and numerical data. Multibody Syst. Dyn. 32(1), 1–25 (2014) MathSciNetCrossRefGoogle Scholar
  64. 64.
    Brogliato, B., Zhang, H., Liu, C.: Analysis of a generalized kinematic impact law for multibody-multicontact systems, with application to the planar rocking block and chains of balls. Multibody Syst. Dyn. 27(3), 351–382 (2012) MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Hurmuzlu, Y., Génot, F., Brogliato, B.: Modeling, stability and control of biped robots—a general framework. Automatica 40(10), 1647–1664 (2004) MathSciNetCrossRefMATHGoogle Scholar
  66. 66.
    Grizzle, J.W., Chevallereau, C., Sinnet, R.W., Ames, A.D.: Models, feedback control, and open problems of 3d bipedal robotic walking. Automatica 50(8), 1955–1988 (2014) MathSciNetCrossRefMATHGoogle Scholar
  67. 67.
    Housner, G.W.: The behavior of inverted pendulum structures during earthquakes. Bull. Seismol. Soc. Am. 53(2), 403–417 (1963) Google Scholar
  68. 68.
    Yim, C.-S., Chopra, A.K., Penzien, J.: Rocking response of rigid blocks to earthquakes. Earthq. Eng. Struct. Dyn. 8(6), 565–587 (1980) CrossRefGoogle Scholar
  69. 69.
    Liu, T.: Non-jamming conditions in multi-contact rigid-body dynamics. Multibody Syst. Dyn. 22(3), 269–295 (2009) MathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    Zhao, Z., Liu, C., Brogliato, B.: Energy dissipation and dispersion effects in granular media. Phys. Rev. E 78(3), 031307 (2008) MathSciNetCrossRefGoogle Scholar
  71. 71.
    Liu, C., Zhao, Z., Brogliato, B.: Variable structure dynamics in a bouncing dimer. Ph.D. Dissertation, INRIA (2008) Google Scholar
  72. 72.
    Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. II. numerical algorithm and simulation results. Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 465(2101), 1–23 (2009) MathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    Peña, F., Prieto, F., Lourenço, P.B., Campos Costa, A., Lemos, J.V.: On the dynamics of rocking motion of single rigid-block structures. Earthq. Eng. Struct. Dyn. 36(15), 2383–2399 (2007) CrossRefGoogle Scholar
  74. 74.
    Peña, F., Lourenço, P.B., Campos-Costa, A.: Experimental dynamic behavior of free-standing multi-block structures under seismic loadings. J. Earthq. Eng. 12(6), 953–979 (2008) CrossRefGoogle Scholar
  75. 75.
    Giouvanidis, A., Dimitrakopoulos, I.: Modelling contact in rocking structures with a nonsmooth dynamics approach. In: ECCOMAS Congress 2016—Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering (2016) Google Scholar
  76. 76.
    Zhang, H., Brogliato, B.: The planar rocking-block: analysis of kinematic restitution laws, and a new rigid-body impact model with friction. Ph.D. Dissertation, INRIA (2011) Google Scholar
  77. 77.
    Bedford, A., Fowler, W.: Engineering Mechanics: Dynamics. Pearson Education, Upper Saddle River (2008) Google Scholar
  78. 78.
    Craig, J.: Introduction to Robotics: Mechanics and Control. Addison-Wesley, Reading (1989) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringThe University of Texas at ArlingtonArlingtonUSA

Personalised recommendations