Multibody System Dynamics

, Volume 42, Issue 3, pp 249–282 | Cite as

Multibody systems with 3D revolute joints with clearances: an industrial case study with an experimental validation

  • Narendra Akhadkar
  • Vincent Acary
  • Bernard Brogliato
Article

Abstract

This article is devoted to the analysis of the influence of the joint clearances in a mechanism of a circuit breaker, which is a 42 degree-of-freedom mechanism made of seven links, seven revolute joints, and four unilateral contacts with friction. Spatial (3D) revolute joints are modeled with both radial and axial clearances taking into account contact with flanges. Unilateral contact, Coulomb’s friction and Newton impact laws are modeled within the framework of nonsmooth mechanics without resorting to some regularizations or compliance/damping at contact. The nonsmooth contact dynamics method based on an event-capturing time-stepping scheme with a second order cone complementarity solver is used to perform the numerical integration. Furthermore, the stabilization of the constraints at the position level is made thanks to the stabilized combined projected Moreau–Jean scheme. The nonsmooth modeling approach together with an event–capturing time-stepping scheme allows us to simulate, in an efficient and robust way, the contact and impacts phenomena that occur in joints with clearances. In particular, comparing with the event-detecting time-stepping schemes, the event-capturing scheme enables us to perform the time-integration with a large number of events (impacts, sliding/sticking transitions, changes in the direction of sliding) and possibly with finite-time accumulations with a reasonable time-step length. Comparing with compliant contact models, we avoid stiff problems related with high stiffnesses at contact which generate some issues in contact stabilization and spurious oscillations during persistent contact periods. In the studied mechanisms of the circuit breakers, the numerical method deals with more than 70 contact points without any problems. Furthermore, the number of contact parameters is small—one coefficient of restitution and one coefficient of friction. Though they are sometimes difficult to measure accurately, the sensitivity of the simulation result with respect to contact parameters is low in the mechanism of the circuit breaker. It is demonstrated that this method, thanks to its robustness and efficiency, allows us to perform a sensitivity analysis using a Monte Carlo method. The numerical results are also validated by careful comparisons with experimental data, showing a very good correlation.

Keywords

Joint clearance Unilateral constraints Coulomb’s friction Impacts Stabilized combined Moreau–Jean time-stepping scheme Sensitivity analysis Experimental validation Circuit breaker 

References

  1. 1.
    Abadie, M.: Dynamic simulation of rigid bodies: modelling of frictional contact. In: Brogliato, B. (ed.) Impacts in Mechanical Systems: Analysis and Modelling. Lecture Notes in Physics (LNP), vol. 551, pp. 61–144. Springer, Berlin (2000) CrossRefGoogle Scholar
  2. 2.
    Acary, V.: Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction. Comput. Methods Appl. Mech. Eng. 256, 224–250 (2013) MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Acary, V., Bonnefon, O., Brémond, M., Huber, O., Pérignon, F., Sinclair, S.: SICONOS: a software for the modeling, the simulation and the control of nonsmooth dynamical systems, 2005–2016. http://siconos.gforge.inria.fr
  4. 4.
    Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin/Heidelberg (2008) MATHGoogle Scholar
  5. 5.
    Acary, V., Cadoux, F.: Applications of an Existence Result for the Coulomb Friction Problem. In: Stavroulakis, G.E. (ed.) Recent Advances in Contact Mechanics. Lecture Notes in Applied and Computational, vol. 56. Springer, Berlin (2013) CrossRefGoogle Scholar
  6. 6.
    Acary, V., Cadoux, F., Lemaréchal, C., Malick, J.: A formulation of the linear discrete Coulomb friction problem via convex optimization. Z. Angew. Math. Mech. 91(2), 155–175 (2011) MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Acary, V., Pérignon, F.: An introduction to SICONOS. Technical Report RT-0340, INRIA (2007) Google Scholar
  8. 8.
    Akhadkar, N., Acary, V., Brogliato, B.: Analysis of collocated feedback controllers for four-bar planar mechanisms with joint clearances. Multibody Syst. Dyn. 38(2), 101–136 (2016) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bauchau, O.A., Rodriguez, J.: Modeling of joints with clearance in flexible multibody systems. Int. J. Solids Struct. 39(1), 41–63 (2002) CrossRefMATHGoogle Scholar
  10. 10.
    Ben Abdallah, M.A., Khemili, I., Aifaoui, N.: Numerical investigation of a flexible slider–crank mechanism with multijoints with clearance. Multibody Syst. Dyn. 38(2), 173–199 (2016) CrossRefGoogle Scholar
  11. 11.
    Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control, 3rd edn. Springer, Switzerland (2016) CrossRefMATHGoogle Scholar
  12. 12.
    Brüls, O., Acary, V., Cardona, A.: Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-\(\alpha\) scheme. Comput. Methods Appl. Mech. Eng. 281, 131–161 (2014) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Brutti, C., Coglitore, G., Valentini, P.P.: Modeling 3D revolute joint with clearance and contact stiffness. Nonlinear Dyn. 66(4), 531–548 (2011) CrossRefGoogle Scholar
  14. 14.
    Chase, K.W., Greenwood, W.H.: Design issues in mechanical tolerance analysis. Manuf. Rev. 1(1), 50–59 (1988) Google Scholar
  15. 15.
    Chase, K.W., Parkinson, A.R.: A survey of research in the application of tolerance analysis to the design of mechanical assemblies. Res. Eng. Des. 3(1), 23–37 (1991) CrossRefGoogle Scholar
  16. 16.
    Chen, Y., Su, Y., Chen, C.: Dynamic analysis of a planar slider-crank mechanism with clearance for a high speed and heavy load press system. Mech. Mach. Theory 98, 81–100 (2016) CrossRefGoogle Scholar
  17. 17.
    OpenCascade Corp.: (2016). http://www.opencascade.org
  18. 18.
    Dantan, J.Y., Qureshi, A.J.: Worst-case and statistical tolerance analysis based on quantified constraint satisfaction problems and Monte Carlo simulation. Comput. Aided Des. 41(1), 1–12 (2009) CrossRefGoogle Scholar
  19. 19.
    Association Francaise de Normalisation. NFT58000 Plastics—tolerances applicable to moulded plastic parts (1987) Google Scholar
  20. 20.
    De Saxcé, G.: Une généralisation de l’inégalité de Fenchel et ses applications aux lois constitutives. C. R. Acad. Sci., Sér. 2, Méc. Phys. Chim. Astron. 314, 125–129 (1992) MATHGoogle Scholar
  21. 21.
    Deck, J.F., Dubowsky, S.: On the limitations of predictions of the dynamic response of machines with clearance connections. J. Mech. Des. 116(3), 833–841 (1994) CrossRefGoogle Scholar
  22. 22.
    Dhande, S.G., Chakraborty, J.: Mechanical error analysis of spatial linkages. J. Mech. Des. 100(4), 732–738 (1978) CrossRefGoogle Scholar
  23. 23.
    Dubowsky, S., Deck, J.F., Costello, H.: The dynamic modeling of flexible spatial machine systems with clearance connections. J. Mech. Transm. Autom. 109(1), 87–94 (1987) CrossRefGoogle Scholar
  24. 24.
    Flores, P.: A parametric study on the dynamic response of planar multibody systems with multiple clearance joints. Nonlinear Dyn. 61(4), 633–653 (2010) CrossRefMATHGoogle Scholar
  25. 25.
    Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82(17), 1359–1369 (2004) CrossRefGoogle Scholar
  26. 26.
    Flores, P., Ambrósio, J., Claro, J.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12(1), 47–74 (2004) CrossRefMATHGoogle Scholar
  27. 27.
    Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23, 165–190 (2010) MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Garrett, R.E., Hall, A.S.: Effect of tolerance and clearance in linkage design. J. Manuf. Sci. Eng. 91(1), 198–202 (1969) Google Scholar
  29. 29.
    Greenwood, W.H., Chase, K.W.: Worst case tolerance analysis with nonlinear problems. J. Manuf. Sci. Eng. 110(3), 232–235 (1988) Google Scholar
  30. 30.
    Gummer, A., Sauer, B.: Influence of contact geometry on local friction energy and stiffness of revolute joints. J. Tribol. 134(2), 021402 (2012) CrossRefGoogle Scholar
  31. 31.
    Gummer, A., Sauer, B.: Modeling planar slider-crank mechanisms with clearance joints in RecurDyn. Multibody Syst. Dyn. 31, 127–145 (2014) CrossRefGoogle Scholar
  32. 32.
    Haroun, A.F., Megahed, S.M.: Simulation and experimentation of multibody mechanical systems with clearance revolute joints. In: Proceedings of World Academy of Science, Engineering and Technology. (2012). World Academy of Science, Engineering and Technology Google Scholar
  33. 33.
    Huang, X., Zhang, Y.: Robust tolerance design for function generation mechanisms with joint clearances. Mech. Mach. Theory 45(9), 1286–1297 (2010) CrossRefMATHGoogle Scholar
  34. 34.
    Jean, M.: The non-smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177(3), 235–257 (1999) MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Jean, M., Moreau, J.J.: Dynamics in the presence of unilateral contacts and dry friction: a numerical approach. In: del Piero, G., Maceri, F. (eds.) Unilateral Problems in Structural Analysis II. CISM Courses and Lectures, vol. 304, pp. 151–196. Springer, Berlin (1987) CrossRefGoogle Scholar
  36. 36.
    Jeang, A.: Tolerance design: choosing optimal tolerance specifications in the design of machined parts. Qual. Reliab. Eng. Int. 10(1), 27–35 (1994) MathSciNetCrossRefGoogle Scholar
  37. 37.
    Kakizaki, T., Deck, J.F., Dubowsky, S.: Modeling the spatial dynamics of robotic manipulators with flexible links and joint clearances. J. Mech. Des. 115(4), 839–847 (1993) CrossRefGoogle Scholar
  38. 38.
    Kane, V.E.: Process capability indices. J. Qual. Technol. 18(1), 41–52 (1986) Google Scholar
  39. 39.
    Kotz, S., Johnson, N.L.: Process Capability Indices. CRC Press, Boca Raton (1993) CrossRefMATHGoogle Scholar
  40. 40.
    Krinner, A., Thümmel, T.: Non-smooth behaviour of a linkage mechanism with revolute clearance joints. In: New Advances in Mechanisms, Transmissions and Applications, pp. 233–241. Springer, Berlin (2014) CrossRefGoogle Scholar
  41. 41.
    Lampaert, V., Swevers, J., Al-Bender, F.: Modification of the Leuven friction model structure. IEEE Trans. Autom. Control 47(4), 683–687 (2002) MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5(2), 193–207 (1994) Google Scholar
  43. 43.
    Lemaréchal, C.: Using a modulopt minimization code. Unpublished Technical Note, INRIA Rocquencourt (1980). http://people.sc.fsu.edu/~inavon/5420a/modulopt.pdf
  44. 44.
    Lemaréchal, C., Panier, E.: Les modules M2QN1 et MQHESS. Unpublished Technical Note, INRIA Rocquencourt (1983). https://who.rocq.inria.fr/Jean-Charles.Gilbert/modulopt/optimization-routines/m2qn1/m2qn1.pdf
  45. 45.
    Liu, C., Tian, Q., Hu, H.: Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints. Mech. Mach. Theory 52, 106–129 (2012) CrossRefGoogle Scholar
  46. 46.
    Liu, C., Zhang, K., Yang, L.: The compliance contact model of cylindrical joints with clearances. Acta Mech. Sin. 21(5), 451–458 (2005) CrossRefMATHGoogle Scholar
  47. 47.
    Marques, F., Isaac, F., Dourado, N., Flores, P.: An enhanced formulation to model spatial revolute joints with radial and axial clearances. Mech. Mach. Theory 116, 123–144 (2017) CrossRefGoogle Scholar
  48. 48.
    Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications. CISM, Courses and Lectures, vol. 302, pp. 1–82. Springer, Wien/New York (1988) CrossRefGoogle Scholar
  49. 49.
    Moreau, J.J.: Some numerical methods in multibody dynamics: Application to granular materials. Eur. J. Mech /A. Solids suppl. (13), 93–114 (1994) Google Scholar
  50. 50.
    Moreau, J.J.: Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Eng. 177, 329–349 (1999) MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Nigam, S.D., Turner, J.U.: Review of statistical approaches to tolerance analysis. Comput. Aided Des. 27(1), 6–15 (1995) CrossRefMATHGoogle Scholar
  52. 52.
    Orden, J.C.G.: Analysis of joint clearances in multibody systems. Multibody Syst. Dyn. 13(4), 401–420 (2005) MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Pereira, C., Ramalho, A., Ambrosio, J.: An enhanced cylindrical contact force model. Multibody Syst. Dyn. 35(3), 277–298 (2015) CrossRefMATHGoogle Scholar
  54. 54.
    Pereira, C.M., Ramalho, A.R., Ambrosio, J.: A critical overview of internal and external cylinder contact force models. Nonlinear Dyn. 63, 681–697 (2011) CrossRefGoogle Scholar
  55. 55.
    Pereira, C.M., Ramalho, A.R., Ambrosio, J.: An enhanced cylindrical contact force model. Multibody Syst. Dyn. 35(3), 277–298 (2015) CrossRefMATHGoogle Scholar
  56. 56.
    PythonOCC: 3D CAD/CAE/PLM development framework for the Python programming language (2016). http://www.pythonocc.org
  57. 57.
    Salahshoor, E., Ebrahimi, S., Maasoomi, M.: Nonlinear vibration analysis of mechanical systems with multiple joint clearances using the method of multiple scales. Mech. Mach. Theory 105, 495–509 (2016) CrossRefGoogle Scholar
  58. 58.
    Scholz, F.: Tolerance stack analysis methods. In: Research and Technology Boeing Information & Support Services, Boeing, Seattle, pp. 1–44 (1995) Google Scholar
  59. 59.
    Skowronski, V.J., Turner, J.U.: Using Monte-Carlo variance reduction in statistical tolerance synthesis. Comput. Aided Des. 29(1), 63–69 (1997) CrossRefGoogle Scholar
  60. 60.
    Srinivasan, V.: ISO deliberates statistical tolerancing. In: Geometric Design Tolerancing: Theories, Standards and Applications, pp. 77–87. Springer, Berlin (1998) CrossRefGoogle Scholar
  61. 61.
    Studer, C.: Numerics of Unilateral Contacts and Friction. Modeling and Numerical Time Integration in Non-Smooth Dynamics. Lecture Notes in Applied and Computational Mechanics, vol. 47. Springer, Berlin (2009) CrossRefMATHGoogle Scholar
  62. 62.
    Yan, S., Xiang, W., Zhang, L.: A comprehensive model for 3D revolute joints with clearances in mechanical systems. Nonlinear Dyn. 80(1), 309–328 (2015) CrossRefGoogle Scholar
  63. 63.
    Thümmel, T., Funk, K.: Multibody modelling of linkage mechanisms including friction, clearance and impact. In: Proceedings of the 10th World Congress on the Theory of Machines and Mechanisms in Oulu, June 20–24, vol. 4, pp. 1387–1392. Oulu University Press, Finland (1999) Google Scholar
  64. 64.
    Thomopoulos, N.T.: Essentials of Monte Carlo Simulation: Statistical Methods for Building Simulation Models. Springer, New York (2012) Google Scholar
  65. 65.
    Thümmel, T.: Experimentelle Mechanismen Dynamik: Messung, Modellierung, Simulation, Verifikation, Interpretation und Beeinflussung typischer Schwingungsphänomene an einem Mechanismenprüfstand. PhD thesis, München, Technische Universität München, Habil.-Schr. (2012) Google Scholar
  66. 66.
    Thümmel, T., Ginzinger, L.: Measurements and simulations of a crank and rocker mechanism including friction, clearance and impacts. In: Proceedings of the IX. International Conference on the Theory of Machines and Mechanisms in Liberec/Czech Republic, Aug. 31–Sept. 2, 2004, pp. 763–768 (2004). Technical University of Liberec, Department of Textile Machine Design Google Scholar
  67. 67.
    Thümmel, T., Roßner, M.: Introduction to modelling and parameter identification methodology of linkages by measurements and simulation. In: Proceedings of the 13th World Congress in Mechanism and Machine Science, Guanajuato, Mexico, 19–25 June, vol. IMD–123 (2011) Google Scholar
  68. 68.
    Thümmel, T., Rutzmoser, J., Ulbrich, H., Robner, M.: Friction modeling and parameter value estimation of mechanisms. In: The 2nd Joint International Conference on Multibody Systems Dynamics, Stuttgart, Germany, May 29–June 1, 2012, pp. 302–312 (2012). University of Stuttgart, Institute of Engineering and Computational Mechanics Google Scholar
  69. 69.
    Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1), 25–47 (2011) CrossRefMATHGoogle Scholar
  70. 70.
    Tian, Q., Lou, J., Mikkola, A.: A new elastohydrodynamic lubricated spherical joint model for rigid-flexible multibody dynamics. Mech. Mach. Theory 107, 210–228 (2017) CrossRefGoogle Scholar
  71. 71.
    Tian, Q., Xiao, Q., Sun, Y., Hu, H., Liu, H., Flores, P.: Coupling dynamics of a geared multibody system supported by elastohydrodynamic lubricated cylindrical joints. Multibody Syst. Dyn. 33(3), 259–284 (2015) MathSciNetCrossRefGoogle Scholar
  72. 72.
    Turner, J.U., Wozny, M.J.: Tolerances in computer-aided geometric design. Vis. Comput. 3(4), 214–226 (1987) CrossRefGoogle Scholar
  73. 73.
    Virlez, G., Brüls, O., Tromme, E., Duysinx, P.: Modeling joints with clearance and friction in multibody dynamic simulation of automotive differentials. Theor. Appl. Mech. Lett. 3(1), 013003 (2013) CrossRefMATHGoogle Scholar
  74. 74.
    Wojtyra, M.: Modeling of static friction in closed-loop kinematic chains—uniqueness and parametric sensitivity problems. Multibody Syst. Dyn. 39(4), 337–361 (2017) MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Wu, F., Dantan, J.Y., Etienne, A., Siadat, A., Martin, P.: Improved algorithm for tolerance allocation based on Monte Carlo simulation and discrete optimization. Comput. Ind. Eng. 56(4), 1402–1413 (2009) CrossRefGoogle Scholar
  76. 76.
    Yaqubi, S., Dardel, M., Mohammadi Daniali, H., Hassan Ghasemi, M.: Modeling and control of crank-slider mechanism with multiple clearance joints. Multibody Syst. Dyn. 36(2), 143–167 (2016) MathSciNetCrossRefMATHGoogle Scholar
  77. 77.
    Zhang, C., Luo, J., Wang, B.: Statistical tolerance synthesis using distribution function zones. Int. J. Prod. Res. 37(17), 3995–4006 (1999) CrossRefMATHGoogle Scholar
  78. 78.
    Zhang, C.C., Wang, H-P.B.: Robust design of assembly and machining tolerance allocations. IIE Trans. 30(1), 17–29 (1997) CrossRefGoogle Scholar
  79. 79.
    Zhang, Z., Xu, L., Flores, P., Lankarani, H.M.: A Kriging Model for dynamics of mechanical systems with revolute joint clearances. J. Comput. Nonlinear Dyn. 9(3), 031013 (2014) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Narendra Akhadkar
    • 1
  • Vincent Acary
    • 2
  • Bernard Brogliato
    • 2
  1. 1.Schneider ElectricGrenobleFrance
  2. 2.INRIA Grenoble Rhône-Alpes, Laboratoire Jean KuntzmanUniversity Grenoble-AlpesSaint IsmierFrance

Personalised recommendations