Multibody System Dynamics

, Volume 37, Issue 3, pp 311–324 | Cite as

Planar collision-type dependence on incident angle and on friction coefficient



This work addresses the ‘hard collision’ approach to the solution of planar, simple non-holonomic systems undergoing a one-point collision-with-friction problem, showing that (i) there are no coherent types of collision whereby forward sliding follows sticking, unless the initial relative tangential velocity of the colliding points vanishes; and (ii) the type of collision can be determined directly, given the collision angle of incidence \(\alpha\) and Coulomb’s coefficient of friction \(\mu\) between the colliding points. The classic hitting rod problem is used to illustrate the \(\alpha \)\(\mu\) collision-type dependence. Finally, the relation between collision with friction and tangential impact problems in multibody systems is briefly discussed.


Collision with friction Tangential impact Stronge’s collision hypothesis Coulomb’s coefficient of friction Collision-type Painleve paradox 


  1. 1.
    Khulief, Y.A.: Modeling of impact in multibody systems: an overview. J. Comput. Nonlinear Dyn. 8(2), 021012 (2014) CrossRefGoogle Scholar
  2. 2.
    Keller, J.B.: Impact with friction. J. Appl. Mech. 53, 1–4 (1986) MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Lankarani, H.M.: A Poisson-based formulation for frictional impact analysis of multibody mechanical systems with open or closed kinematical chains. J. Mech. Des. 122, 489–497 (2000) CrossRefGoogle Scholar
  4. 4.
    Yao, W., Chen, B., Liu, C.: Energetic coefficient of restitution for planar impact in multi-rigid-body systems with friction. Int. J. Impact Eng. 31(3), 255–265 (2005) CrossRefGoogle Scholar
  5. 5.
    Djerassi, S.: Stronge’s hypothesis-based solution to the planar collision-with-friction problem. Multibody Syst. Dyn. 24(4), 493–515 (2010) MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Stronge, W.: Smooth dynamics of oblique impacts with friction. Int. J. Impact Eng. 51, 36–49 (2013) CrossRefGoogle Scholar
  7. 7.
    Wang, Y., Mason, M.T.: Two-dimensional rigid-body collisions with friction. J. Appl. Mech. 59, 635–642 (1992) CrossRefMATHGoogle Scholar
  8. 8.
    Genot, F., Borgliato, B.: New results on Painleve paradox. Eur. J. Mech. A, Solids 18, 653–677 (1999) MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Or, Y., Rimon, E.: Investigation of Painleve paradox and dynamical jamming in mechanics. Nonlinear Dyn. 67, 1647–1668 (2012) CrossRefMATHGoogle Scholar
  10. 10.
    Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications. McGraw-Hill, New York (1985) Google Scholar
  11. 11.
    Routh, E.J.: Dynamics of a System of Rigid Bodies, Elementary Part, 7th edn. Dover, New York (1905) MATHGoogle Scholar
  12. 12.
    Painleve, P.: Sur les Lois du Frottement de Glissement. C. R. Séances Acad. Sci 121, 112–115 (1895), et 141 401–405, 546–552 (1905) MATHGoogle Scholar
  13. 13.
    Leine, R.I., Borgliato, B., Nijmeijer, H.: Periodic motion and bifurcation induced by the Painleve paradox. Eur. J. Mech. A, Solids 21, 869–896 (2002) MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Zhao, Z., Liu, C., Ma, W., Chen, B.: Experimental investigation of the Painleve paradox in a robotic system. J. Appl. Mech. 75(2), 041006 (2008) CrossRefGoogle Scholar
  15. 15.
    Poisson, S.D.: Mechanics. Longmans, London (1817) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.RafaelHaifaIsrael

Personalised recommendations