Multibody System Dynamics

, Volume 36, Issue 3, pp 257–278 | Cite as

A bobsleigh simulator software

  • Georg S. Rempfler
  • Christoph Glocker


This paper presents a model of the artificial ice track in Whistler, Canada that is based on its construction data, and a model of a two-men bobsleigh consisting of nine rigid bodies, having 13 degrees of freedom and incorporating 17 hard frictional contacts. These models are implemented within a simulator that is capable of performing accurate real time simulations of piloted runs on commonly available PC hardware. The simulation is verified against the results of the official two-men race that took place during the Olympic Winter Games in 2010. The simulator has been used by several professional Swiss pilots during their preparation for the 2014 Olympic Winter Games in Sochi, Russia. The simulator is exploited to analyse and judge the range of possible driving lines regarding speed and runtime improvements. It could also serve to consult track designers about safety issues and sleigh constructors about the expected dynamics on a track.


Bobsleigh Multi-body model Real time simulation Non-smooth dynamics 



The authors would like to thank the bobsleigh pilots Christian Reich, Sabina Hafner, Ivo Rüegg, Fabienne Meyer, Caroline Spahni, Gregor Baumann, Rico Peter and Beat Hefti for their contribution to the parameter estimation of the multi-body model and the fruitful interaction during all Olympic season preparation. Furthermore, the authors express a specific thanks to Dr. Michael Möller for his proficient advice and valuable contributions throughout all of the simulator project.


  1. 1.
    Arnold, P.D.: Analyse und Konzeption von Bobfahrwerken. Ph.D. thesis, ETH, Zurich (2013) Google Scholar
  2. 2.
    Autodesk: Maya. (2011). Software (64-bit)
  3. 3.
    Böttcher, R., Scherge, M.: Reibmessungen zum System Kufe/Eis, Technical report, Fraunhofer Institut für Werkstoffmechanik (2011) Google Scholar
  4. 4.
    Braghin, F., Cheli, F., Donzelli, M., Melzi, S., Sabbioni, E.: Multi-body model of a bobsleigh: comparison with experimental data. Multibody Syst. Dyn. 25, 185–201 (2011) CrossRefGoogle Scholar
  5. 5.
    Braghin, F., Cheli, F., Melzi, S., Sabbioni, E.: Design and verification of bobsleigh track. In: Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis (2010) Google Scholar
  6. 6.
    Braghin, F., Cheli, F., Melzi, S., Sabbioni, E.: Experimental assessment of bobsleigh dynamics and ice-skate contact forces. In: Allemang, R., De Clerck, J., Niezrecki, C., Blough, J. (eds.) Topics in Modal Analysis II. Conference Proceedings of the Society for Experimental Mechanics Series, pp. 487–498. Springer, New York (2012). doi: 10.1007/978-1-4614-2419-2_50 Google Scholar
  7. 7.
    FIBT: Two-men bob results—World Championship Calgary. (Season 2004/2005). Accessed 23 July 2014
  8. 8.
    FIBT: Four-men bob results—Olympic games Cesana. (Season 2005/2006). Accessed 23 July 2014
  9. 9.
    FIBT: Two-men bob results—Olympic games Whistler. (Season 2009/2010). Accessed 23 July 2014
  10. 10.
    FIBT: Four-men bob results—World Cup Sochi. (Season 2012/2013). Accessed 23 July 2014
  11. 11.
    FIBT: Two-men bob results—World Cup Whistler. (Season 2012/2013). Accessed 23 July 2014
  12. 12.
    Freudenberg, H., Grüllich, F.: Bob-Expertensystem. Accessed 23 July 2014
  13. 13.
    Glocker, Ch.: Set-Valued Force Laws: Dynamics of Non-smooth Systems. Lecture Notes in Applied Mechanics. Springer, Berlin (2001) CrossRefMATHGoogle Scholar
  14. 14.
    Glocker, Ch.: Introduction to impacts. In: Haslinger, J., Stavroulakis, G. (eds.) Nonsmooth Mechanics of Solids, vol. 485, pp. 45–101. Springer, Berlin (2006) CrossRefGoogle Scholar
  15. 15.
    Glocker, Ch.: Energetic consistency conditions for standard impacts part I: Newton-type inequality impact laws and Kane’s example. Multibody Syst. Dyn. 29, 77–117 (2013). doi: 10.1007/s11044-012-9316-9 MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Glocker, Ch.: Simulation of hard contacts with friction: an iterative projection method. In: Johann, A., Kruse, H.P., Rupp, F., Schmitz, S. (eds.) Recent Trends in Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol. 35, pp. 493–515. Springer, Basel (2013). doi: 10.1007/978-3-0348-0451-6_19 CrossRefGoogle Scholar
  17. 17.
    Günther, M., Kielau, G., Maisser, P.: Simulation von Fahrten gesteuerter Bobschlitten. J. Appl. Math. Mech. 74(9), 434–435 (1994) Google Scholar
  18. 18.
    Günther, M., Maisser, P.: Bob-Fahrsimulator. Accessed 23 July 2014
  19. 19.
    Hainzlmaier, C.: A new tribologically optimized bobsleigh runner. Dissertation, Technische Universität München (2005) Google Scholar
  20. 20.
    Kecskeméthy, A.: An object-oriented approach for an effective formulation of multibody dynamics. Comput. Methods Appl. Mech. Eng. 115, 287–314 (1994) CrossRefGoogle Scholar
  21. 21.
    Kecskeméthy, A., Hiller, M.: Modellierung der Dynamik komplexer Mehrkörpersysteme mit Hilfe von kinematischen Übertragungselementen. Arch. Appl. Mech. 63, 386–401 (1993) CrossRefGoogle Scholar
  22. 22.
    Kelly, A., Hubbard, M.: Design and construction of a bobsled driver training simulator. Sports Eng. 3, 13–24 (2000) CrossRefGoogle Scholar
  23. 23.
    Leine, R.I.: On the stability of motion in non-smooth mechanical systems. Habilitation thesis, ETH, Zurich (2006) Google Scholar
  24. 24.
    Maisser, P.: Brachystochronen als zeitkürzeste Fahrspuren von Bobschlitten. J. Appl. Math. Mech. 78(5), 311–319 (1998) MathSciNetGoogle Scholar
  25. 25.
    Möller, M.: Consistent integrators for non-smooth dynamic systems. Ph.D. thesis, ETH, Zurich (2011) Google Scholar
  26. 26.
    Möller, M., Leine, R., Glocker, Ch.: An efficient approximation of orthotropic set-valued force laws of normal cone type. In: 7th EUROMECH Solid Mechanics Conference, Lisbon, Portugal (2009) Google Scholar
  27. 27.
    Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Non-Smooth Mechanics and Applications. CISM Courses and Lectures, vol. 302, pp. 1–82. Springer, Wien (1988) Google Scholar
  28. 28.
    Mössner, M., Hasler, M., Schindelwig, K., Kaps, P., Nachbauer, W.: An approximate simulation model for initial luge track design. J. Biomech. 44, 892–896 (2011) CrossRefGoogle Scholar
  29. 29.
    Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, Berlin (1997) CrossRefMATHGoogle Scholar
  30. 30.
    Poirier, L., Lozowski, E.P., Maw, S., Stefanyshyn, D.J., Thompson, R.I.: Experimental analysis of ice friction in the sport of bobsleigh. Sports Eng. 14(2-4), 67–72 (2011). doi: 10.1007/s12283-011-0077-0 CrossRefGoogle Scholar
  31. 31.
    Scherge, M., Böttcher, R., Richter, M., Gurgel, U.: High-speed ice friction experiments under lab conditions: on the influence of speed and normal force. ISRN Tribol. 2013, 6 (2013). doi: 10.5402/2013/703202 CrossRefGoogle Scholar
  32. 32.
    Studer, C.: Augmented time-stepping integration of non-smooth dynamical systems. Ph.D. thesis, ETH, Zurich (2008) Google Scholar
  33. 33.
    Studer, C., Glocker, Ch.: Representation of normal cone inclusion problems in dynamics via non-linear equations. Arch. Appl. Mech. 76, 327–348 (2006) CrossRefMATHGoogle Scholar
  34. 34.
    Zahavich, A., Bromley, R., Montgomery, J., Bernamann, M., MacKenzie, S., Cripton, P.: Whistler sliding centre sled trajectory and track construction study, Technical report, SAIT Polytechnic (2012) Google Scholar
  35. 35.
    Zhang, Y., Hubbard, M., Huffmann, R.: Optimum control of bobsled steering. J. Optim. Theory Appl. 85(1), 1–19 (1995) MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.IMES—Center of MechanicsETH Zurich, CLA G23.3ZurichSwitzerland
  2. 2.IMES—Center of MechanicsETH Zurich, CLA J23.1ZurichSwitzerland

Personalised recommendations