Skip to main content
Log in

A bobsleigh simulator software

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a model of the artificial ice track in Whistler, Canada that is based on its construction data, and a model of a two-men bobsleigh consisting of nine rigid bodies, having 13 degrees of freedom and incorporating 17 hard frictional contacts. These models are implemented within a simulator that is capable of performing accurate real time simulations of piloted runs on commonly available PC hardware. The simulation is verified against the results of the official two-men race that took place during the Olympic Winter Games in 2010. The simulator has been used by several professional Swiss pilots during their preparation for the 2014 Olympic Winter Games in Sochi, Russia. The simulator is exploited to analyse and judge the range of possible driving lines regarding speed and runtime improvements. It could also serve to consult track designers about safety issues and sleigh constructors about the expected dynamics on a track.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. The Olympic race in Whistler took place in February 2010. Only the best 20 drivers of the current standings are allowed to start in the last run of the race. This is why only the data of 20 drivers is considered.

References

  1. Arnold, P.D.: Analyse und Konzeption von Bobfahrwerken. Ph.D. thesis, ETH, Zurich (2013)

  2. Autodesk: Maya. http://www.autodesk.com/products/autodesk-maya/overview (2011). Software (64-bit)

  3. Böttcher, R., Scherge, M.: Reibmessungen zum System Kufe/Eis, Technical report, Fraunhofer Institut für Werkstoffmechanik (2011)

  4. Braghin, F., Cheli, F., Donzelli, M., Melzi, S., Sabbioni, E.: Multi-body model of a bobsleigh: comparison with experimental data. Multibody Syst. Dyn. 25, 185–201 (2011)

    Article  Google Scholar 

  5. Braghin, F., Cheli, F., Melzi, S., Sabbioni, E.: Design and verification of bobsleigh track. In: Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis (2010)

    Google Scholar 

  6. Braghin, F., Cheli, F., Melzi, S., Sabbioni, E.: Experimental assessment of bobsleigh dynamics and ice-skate contact forces. In: Allemang, R., De Clerck, J., Niezrecki, C., Blough, J. (eds.) Topics in Modal Analysis II. Conference Proceedings of the Society for Experimental Mechanics Series, pp. 487–498. Springer, New York (2012). doi:10.1007/978-1-4614-2419-2_50

    Google Scholar 

  7. FIBT: Two-men bob results—World Championship Calgary. http://www.fibt.com/races-results/results.html (Season 2004/2005). Accessed 23 July 2014

  8. FIBT: Four-men bob results—Olympic games Cesana. http://www.fibt.com/races-results/results.html (Season 2005/2006). Accessed 23 July 2014

  9. FIBT: Two-men bob results—Olympic games Whistler. http://www.fibt.com/races-results/results.html (Season 2009/2010). Accessed 23 July 2014

  10. FIBT: Four-men bob results—World Cup Sochi. http://www.fibt.com/races-results/results.html (Season 2012/2013). Accessed 23 July 2014

  11. FIBT: Two-men bob results—World Cup Whistler. http://www.fibt.com/races-results/results.html (Season 2012/2013). Accessed 23 July 2014

  12. Freudenberg, H., Grüllich, F.: Bob-Expertensystem. http://www.tu-chemnitz.de/ifm/projekte/p_bobexperte_hf.htm. Accessed 23 July 2014

  13. Glocker, Ch.: Set-Valued Force Laws: Dynamics of Non-smooth Systems. Lecture Notes in Applied Mechanics. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  14. Glocker, Ch.: Introduction to impacts. In: Haslinger, J., Stavroulakis, G. (eds.) Nonsmooth Mechanics of Solids, vol. 485, pp. 45–101. Springer, Berlin (2006)

    Chapter  Google Scholar 

  15. Glocker, Ch.: Energetic consistency conditions for standard impacts part I: Newton-type inequality impact laws and Kane’s example. Multibody Syst. Dyn. 29, 77–117 (2013). doi:10.1007/s11044-012-9316-9

    Article  MathSciNet  MATH  Google Scholar 

  16. Glocker, Ch.: Simulation of hard contacts with friction: an iterative projection method. In: Johann, A., Kruse, H.P., Rupp, F., Schmitz, S. (eds.) Recent Trends in Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol. 35, pp. 493–515. Springer, Basel (2013). doi:10.1007/978-3-0348-0451-6_19

    Chapter  Google Scholar 

  17. Günther, M., Kielau, G., Maisser, P.: Simulation von Fahrten gesteuerter Bobschlitten. J. Appl. Math. Mech. 74(9), 434–435 (1994)

    Google Scholar 

  18. Günther, M., Maisser, P.: Bob-Fahrsimulator. http://www.tu-chemnitz.de/ifm/projekte/p_bob.htm. Accessed 23 July 2014

  19. Hainzlmaier, C.: A new tribologically optimized bobsleigh runner. Dissertation, Technische Universität München (2005)

  20. Kecskeméthy, A.: An object-oriented approach for an effective formulation of multibody dynamics. Comput. Methods Appl. Mech. Eng. 115, 287–314 (1994)

    Article  Google Scholar 

  21. Kecskeméthy, A., Hiller, M.: Modellierung der Dynamik komplexer Mehrkörpersysteme mit Hilfe von kinematischen Übertragungselementen. Arch. Appl. Mech. 63, 386–401 (1993)

    Article  Google Scholar 

  22. Kelly, A., Hubbard, M.: Design and construction of a bobsled driver training simulator. Sports Eng. 3, 13–24 (2000)

    Article  Google Scholar 

  23. Leine, R.I.: On the stability of motion in non-smooth mechanical systems. Habilitation thesis, ETH, Zurich (2006)

  24. Maisser, P.: Brachystochronen als zeitkürzeste Fahrspuren von Bobschlitten. J. Appl. Math. Mech. 78(5), 311–319 (1998)

    MathSciNet  Google Scholar 

  25. Möller, M.: Consistent integrators for non-smooth dynamic systems. Ph.D. thesis, ETH, Zurich (2011)

  26. Möller, M., Leine, R., Glocker, Ch.: An efficient approximation of orthotropic set-valued force laws of normal cone type. In: 7th EUROMECH Solid Mechanics Conference, Lisbon, Portugal (2009)

    Google Scholar 

  27. Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Non-Smooth Mechanics and Applications. CISM Courses and Lectures, vol. 302, pp. 1–82. Springer, Wien (1988)

    Google Scholar 

  28. Mössner, M., Hasler, M., Schindelwig, K., Kaps, P., Nachbauer, W.: An approximate simulation model for initial luge track design. J. Biomech. 44, 892–896 (2011)

    Article  Google Scholar 

  29. Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  30. Poirier, L., Lozowski, E.P., Maw, S., Stefanyshyn, D.J., Thompson, R.I.: Experimental analysis of ice friction in the sport of bobsleigh. Sports Eng. 14(2-4), 67–72 (2011). doi:10.1007/s12283-011-0077-0

    Article  Google Scholar 

  31. Scherge, M., Böttcher, R., Richter, M., Gurgel, U.: High-speed ice friction experiments under lab conditions: on the influence of speed and normal force. ISRN Tribol. 2013, 6 (2013). doi:10.5402/2013/703202

    Article  Google Scholar 

  32. Studer, C.: Augmented time-stepping integration of non-smooth dynamical systems. Ph.D. thesis, ETH, Zurich (2008)

  33. Studer, C., Glocker, Ch.: Representation of normal cone inclusion problems in dynamics via non-linear equations. Arch. Appl. Mech. 76, 327–348 (2006)

    Article  MATH  Google Scholar 

  34. Zahavich, A., Bromley, R., Montgomery, J., Bernamann, M., MacKenzie, S., Cripton, P.: Whistler sliding centre sled trajectory and track construction study, Technical report, SAIT Polytechnic (2012)

  35. Zhang, Y., Hubbard, M., Huffmann, R.: Optimum control of bobsled steering. J. Optim. Theory Appl. 85(1), 1–19 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the bobsleigh pilots Christian Reich, Sabina Hafner, Ivo Rüegg, Fabienne Meyer, Caroline Spahni, Gregor Baumann, Rico Peter and Beat Hefti for their contribution to the parameter estimation of the multi-body model and the fruitful interaction during all Olympic season preparation. Furthermore, the authors express a specific thanks to Dr. Michael Möller for his proficient advice and valuable contributions throughout all of the simulator project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg S. Rempfler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rempfler, G.S., Glocker, C. A bobsleigh simulator software. Multibody Syst Dyn 36, 257–278 (2016). https://doi.org/10.1007/s11044-015-9450-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9450-2

Keywords

Navigation