Skip to main content
Log in

Multibody dynamic systems as Bayesian networks: Applications to robust state estimation of mechanisms

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This article addresses the problem of robustly estimating the dynamic state of a mechanism from a set of noisy sensor measurements. We start with a rigorous treatment of the problem from the perspective of graphical models, a popular formalism in the fields of statistical inference and machine learning. The modeling power of such a formalism is demonstrated by showing how the sequential estimation of a mechanism state with an extended Kalman filter (EKF), often used in previous works, becomes just one of the possible solutions. As an interesting alternative, we derive the formulation of a sequential Monte Carlo (SMC) filter, also known as a particle filter (PF), suitable for online tracking the state of a rigid mechanism. We validate our ideas with both simulated and real datasets. Moreover, we prove the usefulness of the particle filtering solution for real-work applications due to its unmatched capability of automatically inferring the initial states of the mechanism along with its “assembly configuration” or “branch” if several ones are possible, a feature not matched by any previously proposed state observer in the multibody literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The three types are: (i) directed acyclic graphs (or Bayesian networks) [24], (ii) undirected graphs (Markov random fields) [25], and (iii) factor graphs [26].

  2. The rule for removing variables from a DBN determines that new edges must be created between the neighbors of removed nodes.

  3. From p(a|b)=p(a,b)/p(b) it follows that p(a,b)=p(a|b)p(b), which can be generalized to p(a,b|c)=p(a|b,c)p(b|c) via, for example, the multiplication rule for p(a,b,c).

  4. The Bayes rule establishes how the observation of b affects the prior knowledge regarding another variable p(a). It says that p(a|b)∝p(b|a)p(a), with p(b|a) customarily called the likelihood of b. In the text, we apply the rule extension for conditional probabilities, where all terms can be conditioned to another variable or variable set c, that is, p(a|b,c)∝p(b|a,c)p(a|c).

  5. This law states that any marginal distribution p(a) can be expressed as the summation or integration (for discrete or continuous domains, respectively) of the conditional p(a|b) for all possible values of b, that is, \(p(a)=\int_{-\infty}^{_{\infty}} p(a|b)p(b)\, db\). It can be trivially extended for conditioned probabilities, as required in our derivation, that is, \(p(a|c)=\int_{-\infty}^{_{\infty}} p(a|b,c)p(b|c)\,db\). For discrete variables, as in the case of the branch B, integrals are replaced by summations over all the potential values.

  6. For planar rotations in SO(2), weighted averaging can be performed by weighting the two-dimensional coordinates of points at each given angle over the unit circle and then projecting the average point back to the unit circle. For SO(3) rotations, several averaging methods exist depending on the desired matrix metric over the manifold [42].

  7. The continuous uniform distribution \(p(x)=\mathcal{U}(a,b)\) assigns the same probability density to every point x∈(a,b), whereas the discrete version \(P(x)=\mathcal{U}(S)\) models the case where each event in the set S has exactly the same probability of occurrence.

  8. See http://www.youtube.com/watch?v=7Zru0oiz36g.

  9. Hosted at https://github.com/jlblancoc/mbde.

References

  1. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems, vol. 1. Allyn and Bacon, Boston (1989)

    Google Scholar 

  2. García de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge. Springer, Berlin (1994)

    Book  Google Scholar 

  3. Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Shabana, A.A.: Flexible multibody dynamics: Review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, New York (2001)

    Google Scholar 

  6. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  7. Wittenburg, J.: Dynamics of Multibody Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  8. Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2008)

    Article  Google Scholar 

  9. Jain, A.: Unified formulation of dynamics for serial rigid multibody systems. J. Guid. Control Dyn. 14(3), 531–542 (1991)

    Article  MATH  Google Scholar 

  10. Featherstone, R.: A divide-and-conquer articulated-body algorithm for parallel O(log(n)) calculation of rigid-body dynamics. Part 1: Basic algorithm. Int. J. Robot. Res. 18(9), 867–875 (1999)

    Article  Google Scholar 

  11. Featherstone, R.: A divide-and-conquer articulated-body algorithm for parallel O(log(n)) calculation of rigid-body dynamics. Part 2: Trees, loops, and accuracy. Int. J. Robot. Res. 18(9), 876–892 (1999)

    Article  Google Scholar 

  12. Kreutz-Delgado, K., Jain, A., Rodriguez, G.: Recursive formulation of operational space control. Int. J. Robot. Res. 11(4), 320–328 (1992)

    Article  Google Scholar 

  13. Poursina, M., Anderson, K.S.: An extended divide-and-conquer algorithm for a generalized class of multibody constraints. Multibody Syst. Dyn. 29(3), 235–254 (2013)

    Article  MathSciNet  Google Scholar 

  14. Prakash, R., Burkhart, P.D., Chen, A., Comeaux, K.A., Guernsey, C.S., Kipp, D.M., Lorenzoni, L.V., Mendeck, G.F., Powell, R.W., Rivellini, T.P., et al.: Mars science laboratory entry, descent, and landing system overview. In: Aerospace Conference, 2008 IEEE, pp. 1–18. IEEE, New York (2008)

    Chapter  Google Scholar 

  15. Kolmogorov, A.: On analytical methods in the theory of probability. Math. Ann. 104, 415–458 (1931)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sandu, A., Sandu, C., Ahmadian, M.: Modeling multibody systems with uncertainties. Part I: Theoretical and computational aspects. Multibody Syst. Dyn. 15(4), 369–391 (2006)

    Article  MathSciNet  Google Scholar 

  17. Sandu, C., Sandu, A., Ahmadian, M.: Modeling multibody systems with uncertainties. Part II: Numerical applications. Multibody Syst. Dyn. 15(3), 241–262 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Poursina, M.: An efficient application of polynomial chaos expansion for the dynamic analysis of multibody systems with uncertainty. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE) (2014)

    Google Scholar 

  19. Cuadrado, J., Dopico, D., Perez, J.A., Pastorino, R.: Automotive observers based on multibody models and the extended Kalman filter. Multibody Syst. Dyn. 27(1), 3–19 (2012). Cited by (since 1996):2

    Article  MATH  MathSciNet  Google Scholar 

  20. Cuadrado, J., Dopico, D., Barreiro, A., Delgado, E.: Real-time state observers based on multibody models and the extended Kalman filter. J. Mech. Sci. Technol. 23(4), 894–900 (2009)

    Article  Google Scholar 

  21. Cuadrado, J., Dopico, D., Perez, J.A., Pastorino, R.: Influence of the sensored magnitude in the performance of observers based on multibody models and the extended Kalman filter. In: ECCOMAS Thematic Conference on Multibody Dynamics, pp. 126–127 (2009)

    Google Scholar 

  22. Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  23. Jensen, F.V.: An Introduction to Bayesian Networks, vol. 74. UCL Press, London (1996)

    Google Scholar 

  24. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    Google Scholar 

  25. Kindermann, R., Snell, J.L., et al.: Markov Random Fields and Their Applications, vol. 1. American Mathematical Society, Providence (1980)

    Book  MATH  Google Scholar 

  26. Loeliger, H.-A.: An introduction to factor graphs. IEEE Signal Process. Mag. 21(1), 28–41 (2004)

    Article  Google Scholar 

  27. Dawid, A.: Conditional independence in statistical theory. J. R. Stat. Soc. Ser. B (Methodol.) 41, 1–31 (1979)

    MATH  MathSciNet  Google Scholar 

  28. Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  29. Porta, J.M., Ros, L., Bohigas, O., Manubens, M., Rosales, C., Jaillet, L.: An open-source toolbox for motion analysis of closed-chain mechanisms. In: Computational Kinematics, pp. 147–154. Springer, Berlin (2014)

    Chapter  Google Scholar 

  30. Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Stat. 5(1), 1–25 (1996)

    MathSciNet  Google Scholar 

  31. Kalman, R.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  Google Scholar 

  32. Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley, New York (2006)

    Book  Google Scholar 

  33. Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House, Norwood (2004)

    Google Scholar 

  34. Pastorino, R., Richiedei, D., Cuadrado, J., Trevisani, A.: State estimation using multibody models and nonlinear Kalman filters. Int. J. Non-Linear Mech. 53, 83–90 (2013)

    Article  Google Scholar 

  35. Rubin, D.: A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: The SIR algorithm. J. Am. Stat. Assoc. 82(398), 543–546 (1987)

    Google Scholar 

  36. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T., Sci, D., Organ, T., Adelaide, S.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  37. Blanco, J.-L., González, J., Fernández-Madrigal, J.-A.: Optimal filtering for non-parametric observation models: Applications to localization and slam. Int. J. Robot. Res. 29(14), 1726–1742 (2010)

    Article  Google Scholar 

  38. Doucet, A., de Freitas, N., Murphy, K., Russell, S.: Rao–Blackwellised particle filtering for dynamic Bayesian networks. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, pp. 176–183 (2000)

    Google Scholar 

  39. Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In: IEEE Proceedings on Radar and Signal Processing, vol. 140, pp. 107–113 (1993)

    Google Scholar 

  40. Douc, R., Cappé, O.: Comparison of resampling schemes for particle filtering. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, pp. 64–69. IEEE, New York (2005)

    Google Scholar 

  41. Liu, J.S., Chen, R.: Blind deconvolution via sequential imputations. J. Am. Stat. Assoc. 90(430), 567–576 (1995)

    Article  MATH  Google Scholar 

  42. Moakher, M.: Means and averaging in the group of rotations. SIAM J. Matrix Anal. Appl. 24(1), 1–16 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  43. Julier, S., Uhlmann, J., Durrant-Whyte, H.: A new approach for filtering nonlinear systems. In: Proceedings of the American Control Conference, vol. 3, pp. 1628–1632 (1995)

    Google Scholar 

  44. Serna, M.A., Avilés, R., García de Jalón, J.: Dynamic analysis of plane mechanisms with lower pairs in basic coordinates. Mech. Mach. Theory 17(6), 397–403 (1982)

    Article  Google Scholar 

  45. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org

    Google Scholar 

  46. Carpenter, J., Clifford, P., Fearnhead, P.: Improved particle filter for nonlinear problems. IEE Proc. Radar Sonar Navig. 146(1), 2–7 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the Spanish “Ministerio de Ciencia e Innovación” under the contract “DAVARBOT” (DPI 2011-22513), the grant program JDC-MICINN 2011, and the Andalusian Regional Government grant program FPDU 2009, cofinanced by the European Union through the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Blanco-Claraco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco-Claraco, J.L., Torres-Moreno, J.L. & Giménez-Fernández, A. Multibody dynamic systems as Bayesian networks: Applications to robust state estimation of mechanisms. Multibody Syst Dyn 34, 103–128 (2015). https://doi.org/10.1007/s11044-014-9440-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-014-9440-9

Keywords

Navigation