Multibody System Dynamics

, Volume 34, Issue 2, pp 103–128 | Cite as

Multibody dynamic systems as Bayesian networks: Applications to robust state estimation of mechanisms

  • J. L. Blanco-Claraco
  • J. L. Torres-Moreno
  • A. Giménez-Fernández


This article addresses the problem of robustly estimating the dynamic state of a mechanism from a set of noisy sensor measurements. We start with a rigorous treatment of the problem from the perspective of graphical models, a popular formalism in the fields of statistical inference and machine learning. The modeling power of such a formalism is demonstrated by showing how the sequential estimation of a mechanism state with an extended Kalman filter (EKF), often used in previous works, becomes just one of the possible solutions. As an interesting alternative, we derive the formulation of a sequential Monte Carlo (SMC) filter, also known as a particle filter (PF), suitable for online tracking the state of a rigid mechanism. We validate our ideas with both simulated and real datasets. Moreover, we prove the usefulness of the particle filtering solution for real-work applications due to its unmatched capability of automatically inferring the initial states of the mechanism along with its “assembly configuration” or “branch” if several ones are possible, a feature not matched by any previously proposed state observer in the multibody literature.


State observers EKF Particle filter Uncertainty Rigid multibody systems Virtual sensors 



This work has been partially funded by the Spanish “Ministerio de Ciencia e Innovación” under the contract “DAVARBOT” (DPI 2011-22513), the grant program JDC-MICINN 2011, and the Andalusian Regional Government grant program FPDU 2009, cofinanced by the European Union through the European Regional Development Fund (ERDF).


  1. 1.
    Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems, vol. 1. Allyn and Bacon, Boston (1989) Google Scholar
  2. 2.
    García de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge. Springer, Berlin (1994) CrossRefGoogle Scholar
  3. 3.
    Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997) CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Shabana, A.A.: Flexible multibody dynamics: Review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997) CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, New York (2001) Google Scholar
  6. 6.
    Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2005) CrossRefMATHGoogle Scholar
  7. 7.
    Wittenburg, J.: Dynamics of Multibody Systems. Springer, Berlin (2008) MATHGoogle Scholar
  8. 8.
    Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2008) CrossRefGoogle Scholar
  9. 9.
    Jain, A.: Unified formulation of dynamics for serial rigid multibody systems. J. Guid. Control Dyn. 14(3), 531–542 (1991) CrossRefMATHGoogle Scholar
  10. 10.
    Featherstone, R.: A divide-and-conquer articulated-body algorithm for parallel O(log(n)) calculation of rigid-body dynamics. Part 1: Basic algorithm. Int. J. Robot. Res. 18(9), 867–875 (1999) CrossRefGoogle Scholar
  11. 11.
    Featherstone, R.: A divide-and-conquer articulated-body algorithm for parallel O(log(n)) calculation of rigid-body dynamics. Part 2: Trees, loops, and accuracy. Int. J. Robot. Res. 18(9), 876–892 (1999) CrossRefGoogle Scholar
  12. 12.
    Kreutz-Delgado, K., Jain, A., Rodriguez, G.: Recursive formulation of operational space control. Int. J. Robot. Res. 11(4), 320–328 (1992) CrossRefGoogle Scholar
  13. 13.
    Poursina, M., Anderson, K.S.: An extended divide-and-conquer algorithm for a generalized class of multibody constraints. Multibody Syst. Dyn. 29(3), 235–254 (2013) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Prakash, R., Burkhart, P.D., Chen, A., Comeaux, K.A., Guernsey, C.S., Kipp, D.M., Lorenzoni, L.V., Mendeck, G.F., Powell, R.W., Rivellini, T.P., et al.: Mars science laboratory entry, descent, and landing system overview. In: Aerospace Conference, 2008 IEEE, pp. 1–18. IEEE, New York (2008) CrossRefGoogle Scholar
  15. 15.
    Kolmogorov, A.: On analytical methods in the theory of probability. Math. Ann. 104, 415–458 (1931) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Sandu, A., Sandu, C., Ahmadian, M.: Modeling multibody systems with uncertainties. Part I: Theoretical and computational aspects. Multibody Syst. Dyn. 15(4), 369–391 (2006) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Sandu, C., Sandu, A., Ahmadian, M.: Modeling multibody systems with uncertainties. Part II: Numerical applications. Multibody Syst. Dyn. 15(3), 241–262 (2006) CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Poursina, M.: An efficient application of polynomial chaos expansion for the dynamic analysis of multibody systems with uncertainty. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE) (2014) Google Scholar
  19. 19.
    Cuadrado, J., Dopico, D., Perez, J.A., Pastorino, R.: Automotive observers based on multibody models and the extended Kalman filter. Multibody Syst. Dyn. 27(1), 3–19 (2012). Cited by (since 1996):2 CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Cuadrado, J., Dopico, D., Barreiro, A., Delgado, E.: Real-time state observers based on multibody models and the extended Kalman filter. J. Mech. Sci. Technol. 23(4), 894–900 (2009) CrossRefGoogle Scholar
  21. 21.
    Cuadrado, J., Dopico, D., Perez, J.A., Pastorino, R.: Influence of the sensored magnitude in the performance of observers based on multibody models and the extended Kalman filter. In: ECCOMAS Thematic Conference on Multibody Dynamics, pp. 126–127 (2009) Google Scholar
  22. 22.
    Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006) MATHGoogle Scholar
  23. 23.
    Jensen, F.V.: An Introduction to Bayesian Networks, vol. 74. UCL Press, London (1996) Google Scholar
  24. 24.
    Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009) Google Scholar
  25. 25.
    Kindermann, R., Snell, J.L., et al.: Markov Random Fields and Their Applications, vol. 1. American Mathematical Society, Providence (1980) CrossRefMATHGoogle Scholar
  26. 26.
    Loeliger, H.-A.: An introduction to factor graphs. IEEE Signal Process. Mag. 21(1), 28–41 (2004) CrossRefGoogle Scholar
  27. 27.
    Dawid, A.: Conditional independence in statistical theory. J. R. Stat. Soc. Ser. B (Methodol.) 41, 1–31 (1979) MATHMathSciNetGoogle Scholar
  28. 28.
    Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, Berlin (2001) CrossRefMATHGoogle Scholar
  29. 29.
    Porta, J.M., Ros, L., Bohigas, O., Manubens, M., Rosales, C., Jaillet, L.: An open-source toolbox for motion analysis of closed-chain mechanisms. In: Computational Kinematics, pp. 147–154. Springer, Berlin (2014) CrossRefGoogle Scholar
  30. 30.
    Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Stat. 5(1), 1–25 (1996) MathSciNetGoogle Scholar
  31. 31.
    Kalman, R.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960) CrossRefGoogle Scholar
  32. 32.
    Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley, New York (2006) CrossRefGoogle Scholar
  33. 33.
    Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House, Norwood (2004) Google Scholar
  34. 34.
    Pastorino, R., Richiedei, D., Cuadrado, J., Trevisani, A.: State estimation using multibody models and nonlinear Kalman filters. Int. J. Non-Linear Mech. 53, 83–90 (2013) CrossRefGoogle Scholar
  35. 35.
    Rubin, D.: A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: The SIR algorithm. J. Am. Stat. Assoc. 82(398), 543–546 (1987) Google Scholar
  36. 36.
    Arulampalam, M., Maskell, S., Gordon, N., Clapp, T., Sci, D., Organ, T., Adelaide, S.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002) CrossRefGoogle Scholar
  37. 37.
    Blanco, J.-L., González, J., Fernández-Madrigal, J.-A.: Optimal filtering for non-parametric observation models: Applications to localization and slam. Int. J. Robot. Res. 29(14), 1726–1742 (2010) CrossRefGoogle Scholar
  38. 38.
    Doucet, A., de Freitas, N., Murphy, K., Russell, S.: Rao–Blackwellised particle filtering for dynamic Bayesian networks. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, pp. 176–183 (2000) Google Scholar
  39. 39.
    Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In: IEEE Proceedings on Radar and Signal Processing, vol. 140, pp. 107–113 (1993) Google Scholar
  40. 40.
    Douc, R., Cappé, O.: Comparison of resampling schemes for particle filtering. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, pp. 64–69. IEEE, New York (2005) Google Scholar
  41. 41.
    Liu, J.S., Chen, R.: Blind deconvolution via sequential imputations. J. Am. Stat. Assoc. 90(430), 567–576 (1995) CrossRefMATHGoogle Scholar
  42. 42.
    Moakher, M.: Means and averaging in the group of rotations. SIAM J. Matrix Anal. Appl. 24(1), 1–16 (2002) CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Julier, S., Uhlmann, J., Durrant-Whyte, H.: A new approach for filtering nonlinear systems. In: Proceedings of the American Control Conference, vol. 3, pp. 1628–1632 (1995) Google Scholar
  44. 44.
    Serna, M.A., Avilés, R., García de Jalón, J.: Dynamic analysis of plane mechanisms with lower pairs in basic coordinates. Mech. Mach. Theory 17(6), 397–403 (1982) CrossRefGoogle Scholar
  45. 45.
    Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). Google Scholar
  46. 46.
    Carpenter, J., Clifford, P., Fearnhead, P.: Improved particle filter for nonlinear problems. IEE Proc. Radar Sonar Navig. 146(1), 2–7 (1999) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • J. L. Blanco-Claraco
    • 1
  • J. L. Torres-Moreno
    • 1
  • A. Giménez-Fernández
    • 1
  1. 1.University of AlmeríaAlmeriaSpain

Personalised recommendations