Skip to main content

Advertisement

Log in

Structural optimization of wind turbine rotor blades by multilevel sectional/multibody/3D-FEM analysis

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The present work describes a method for the structural optimization of wind turbine rotor blades for given prescribed aerodynamic shape. The proposed approach operates at various description levels producing cost-minimizing solutions that satisfy desired design constraints at the finest modeling level. At first, a “coarse”-level constrained design optimization is performed by using a 1D spatial geometrically exact beam model for aero-servo-elastic multibody analysis and load calculation, integrated with a 2D FEM cross sectional model for stress/strain analysis, and the evaluation of the 1D model fully-populated cross sectional stiffness matrices. Next, a “fine”-level 3D FEM model is used for the refinement of the coarse-level solution. Improved results obtained at the level of the 3D model are utilized at the following coarse-level iteration through a heuristic modification of the design constraints. In addition, a buckling analysis is performed at the fine description level, which in turn affects the nonstructural blade mass. The updated constraint bounds and mass make their effects felt at the next coarse-level constrained design optimization, thereby closing the loop between the coarse and fine description levels. The multilevel optimization procedure is implemented in a computer program and it is demonstrated on the design of a multi-MW horizontal axis wind turbine rotor blade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Bottasso, C.L., Campagnolo, F., Croce, A., Tibaldi, C.: Optimization-based study of bend-twist coupled rotor blades for passive and integrated passive/active load alleviation. Wind Energy. doi:10.1002/we.1543 (2012)

    MATH  Google Scholar 

  2. Wind Turbines. Part 1. Design Requirements, 3rd edn. International Standard IEC 61400-1 (2005)

  3. Guideline for the Certification of Wind Turbines, edn. 2010. Germanischer Lloyd Industrial Services GmbH, Renewables Certification, Brooktorkai 10, 20457 Hamburg, Germany (2010)

  4. Lee, D., Hodges, D.H., Patil, M.J.: Multi-flexible-body dynamic analysis of horizontal axis wind turbines. Wind Energy 5, 281–300 (2002)

    Article  Google Scholar 

  5. Bauchau, O.A., Bottasso, C.L., Nikishkov, Y.G.: Modeling rotorcraft dynamics with finite element multibody procedures. Math. Comput. Model. 33, 1113–1137 (2001)

    Article  MATH  Google Scholar 

  6. Bottasso, C.L., Croce, A.: Cp-Lambda: User’s Manual. Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano (2006–2013)

  7. Larsen, T.J., Hansen, A.M.: How 2 HAWC2: The User’s Manual. Risø  report Risø-R-1597(ver. 3-1)(EN), Risø  National Laboratory, Roskilde, Denmark (2007)

  8. Jonkman, J.M., Buhl, M.L. Jr: FAST User’s Guide. Technical report NREL/EL-500-38230, National Renewable Energy Laboratory, Colorado, USA (2005)

  9. Bladed. GL Garrad Hassan, St. Vincent’s Works, Silverthorne Lane, Bristol. www.gl-garradhassan.com

  10. RotorOpt perfects rotor design. LM Glasfiber, News Letter, September, p. 5 (2007)

  11. Fuglsang, L.: Integrated design of turbine rotors. In: European Wind Energy Conference and Exhibition (EWEC), Brussels, Belgium, 31 March–3 April (2008)

    Google Scholar 

  12. Duineveld, N.P.: Structure and Possibilities of the FOCUS Design Package. Dutch Wind Workshops. TU Delft, Delft (2008)

    Google Scholar 

  13. Jonkman, J.: NREL structural and aeroelastic codes. In: 2008 Wind Turbine Workshop, Sandia National Laboratories, Albuquerque, NM, USA, 12–14 May (2008)

    Google Scholar 

  14. Bottasso, C.L., Campagnolo, F., Croce, A.: Multi-disciplinary constrained optimization of wind turbines. Multibody Syst. Dyn. 27, 21–53 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Laird, D.L.: NUMAD User’s Manual—Numerical Manufactoring and Design Tool. Sandia report SAND2001-2375, Wind Energy Technology, Sandia National Laboratories (2001)

  16. Hoyt, D.M., Graesser, D.: Rapid FEA of wind turbine blades—summary of NSE composites’ structural analysis capabilities for blade NSE bladeMesher in-house software. NSE Composites, 1101 North Northlake Way, Suite 4, Seattle, WA 98103, May (2008)

  17. Ashwill, T.: Sweep-Twist Adaptive Rotor Blade: Final Project Report. Sandia report SAND2009-8037, Sandia National Laboratories, Albuquerque, NM, USA (2010)

  18. Jureczko, M., Pawlak, M., Mȩżyk, A.: Optimisation of wind turbine blades. J. Mater. Process. Technol. 167, 463–471 (2005)

    Article  Google Scholar 

  19. Bauchau, O.A.: Flexible Multibody Dynamics. Solid Mechanics and Its Applications, vol. 176. Springer, Berlin (2011)

    MATH  Google Scholar 

  20. Bauchau, O.A., Bottasso, C.L., Trainelli, L.: Robust integration schemes for flexible multibody systems. Comput. Methods Appl. Mech. Eng. 192, 395–420 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Giavotto, V., Borri, M., Mantegazza, P., Ghiringhelli, G.: Anisotropic beam theory and applications. Comput. Struct. 16, 403–413 (1983)

    Article  MATH  Google Scholar 

  22. Bottasso, C.L., Croce, A., Nam, Y., Riboldi, C.E.D.: Power curve tracking in the presence of a tip speed constraint. Renew. Energy 40, 1–12 (2012)

    Article  Google Scholar 

  23. Matlab. The MathWorks Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, USA. www.mathworks.com

  24. HyperMesh. Altair Engineering, 1820 Big River Rd., Troy, MI 48082, USA. www.altair.com

  25. Philippidis, T.P., Vassilopoulos, A.P.: Complex stress state effect on fatigue life of GRP laminates. Part I. Experimental. Int. J. Fatigue 24, 813–823 (2002)

    Article  Google Scholar 

  26. Philippidis, T.P., Vassilopoulos, A.P.: Complex stress state effect on fatigue life of GRP laminates. Part II. Theoretical formulation. Int. J. Fatigue 24, 825–830 (2002)

    Article  Google Scholar 

  27. MD/MSC NASTRAN 2010: Quick Reference Guide. MSC Software (2010)

  28. Drela, M., Youngren, H.: Xfoil: Subsonic Airfoil Development System. web.mit.edu/drela/Public/web/xfoil

  29. MD/MSC NASTRAN 2011: Linear Static Analysis User’s Guide. MSC Software (2011)

  30. Laird, D., Montoya, F., Malcolm, D.J.: Finite element modeling of wind turbine blades. In: Proceedings of AIAA/ASME Wind Energy Symposium, AIAA-2005-0.195, Reno, Nevada, USA, pp. 9–17 (2005)

    Google Scholar 

  31. Berry, D.: Design of 9-Meter Carbon-Fiberglass Prototype Blades: CX-100 and TX-100. Sandia report SAND2007-0201, Sandia National Laboratories, Albuquerque, NM, USA (2007)

  32. Resor, B.: Integrated design and analysis at Sandia. In: 2010 Sandia Wind Turbine Blade Workshop, Sandia National Laboratories, Albuquerque, NM, USA (2010)

    Google Scholar 

  33. Federov, V.A., Dimitrov, N., Berggren, C., Krenk, S., Branner, K., Berring, P.: Investigation of structural behaviour due to bend-twist couplings in wind turbine blades. In: Proceedings of International Conference on Composite Materials (ICCM-17), Edinburgh, Scotland, 27–31 July (2009)

    Google Scholar 

  34. Chen, J., Hallett, S., Wisnom, M.R.: Modelling complex geometry using solid finite element meshes with correct composite material orientations. Comput. Struct. 88, 602–609 (2010)

    Article  Google Scholar 

  35. MSC NASTRAN: Element Reference Manual. MSC Software (2010)

  36. Piegl, L., Tiller, W.: The NURBS Book. Monographs and Visual Communications, 2nd edn. Springer, New York (1996)

    Google Scholar 

  37. Lee, E.T.Y.: Choosing nodes in parametric curve interpolation. Comput. Aided Des. 21, 363–370 (1989)

    Article  MATH  Google Scholar 

  38. Bishop, N.W.M., Sherratt, F.: Finite Element Based Fatigue Calculations. National Agency for Finite Element Methods & Standards (NAFEMS), Great Britain (2000)

  39. Sullins, R.T., Smith, G.W., Spier, E.E.: Manual for Structural Stability Analysis of Sandwich Plates and Shells. NASA contractor report, NASA CR-1457, Washington DC, USA, December (1969)

  40. Lindenburg, C., de Winkel, G.D.: Buckling load prediction tools for rotor blades. ECN-C-05-103 (2005)

  41. Bruhn, E.F.: Analysis and Design of Flight Vehicle Structures, 2nd edn. Jacobs Pub. (1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Bottasso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bottasso, C.L., Campagnolo, F., Croce, A. et al. Structural optimization of wind turbine rotor blades by multilevel sectional/multibody/3D-FEM analysis. Multibody Syst Dyn 32, 87–116 (2014). https://doi.org/10.1007/s11044-013-9394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9394-3

Keywords

Navigation