Skip to main content
Log in

Simulation of rowing in an optimization context

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Competitive rowing requires efforts close to the physiological limits, where oxygen consumption is one main aspect. The rowing event also incorporates interactions between the rower, the boat and oars, and water. When the intention is to improve the performance, all these properties make the sport interesting from a scientific point of view, as the many variables influencing the performance form a complex optimization problem. Our aim was to formulate the rowing event as an optimization problem where the movement and forces are completely determined by the optimization, giving at least qualitative indications on good performance. A mechanical model of rigid links was used to represent rower, boat and oars. A multiple phase cyclic movement was simulated where catch slip, driving phase, release slip and recovery were modeled. For this simplified model, we demonstrate the influence of the stated mathematical cost function as well as a parameter study where the optimal performance is related to the planned average boat velocity. The results show qualitatively good resemblance to expected movements for the rowing event. An energy loss model in combination with case specific properties of rower capacities, boat properties, and rigging was required to draw qualitative practical conclusions about the rowing technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Volianitis, S., Secher, N.H.: Rowing, the ultimate challenge to the human body—implications for physiological variables. Clin. Physiol. Funct. Imaging 29(4), 241–244 (2009)

    Article  Google Scholar 

  2. Nolte, V.: Rowing Faster, 2nd edn. Human Kinetics, Champaign (2005)

    Google Scholar 

  3. Hofmijster, M.J., Landman, E.H.J., Smith, R.M., van Soest, A.J.K.: Effect of stroke rate on the distribution of net mechanical power in rowing. J. Sports Sci. 25(4), 403–411 (2007)

    Article  Google Scholar 

  4. Tachibana, K., Yashiro, K., Miyazaki, J., Ikegami, Y., Higuchi, M.: Muscle cross-sectional areas and performance power of limbs and trunk in the rowing motion. Sports Biomech. 6(1), 44–58 (2007)

    Article  Google Scholar 

  5. Nozaki, D., Kawakami, Y., Fukunaga, T., Miyashita, M.: Mechanical efficiency of rowing a single scull. Scand. J. Med. Sci. Sports 3, 251–255 (1993)

    Article  Google Scholar 

  6. Izquierdo-Gabarren, M., de Txabarri Expósito, R., de Villarreal, E., Izquierdo, M.: Physiological factors to predict on traditional rowing performance. Eur. J. Appl. Physiol. 108(1), 83–92 (2010)

    Article  Google Scholar 

  7. Shimoda, M., Fukunaga, T., Higuchi, M., Kawakami, Y.: Stroke power consistency and 2000 m rowing performance in varsity rowers. Scand. J. Med. Sci. Sports 19(1), 83–86 (2009)

    Article  Google Scholar 

  8. Caplan, N., Gardner, T.: A fluid dynamic investigation of the big blade and macon oar blade designs in rowing propulsion. J. Sports Sci. 25(6), 643–650 (2007)

    Article  Google Scholar 

  9. Leroyer, A., Barré, S., Kobus, J.M., Visonneau, M.: Experimental and numerical investigations of the flow around an oar blade. J. Mar. Sci. Technol. 13, 1–15 (2008)

    Article  Google Scholar 

  10. Sliasas, A., Tullis, S.: Numerical modelling of rowing blade hydrodynamics. Sports Eng. 12, 31–40 (2009)

    Article  Google Scholar 

  11. Leroyer, A., Barré, S., Kobus, J.M., Visonneau, M.: Influence of free surface, unsteadiness and viscous effects on oar blade hydrodynamic loads. J. Sports Sci. 28(12), 1287–1298 (2010)

    Article  Google Scholar 

  12. Ĉerne, T., Kamnik, R., Munih, M.: The measurement setup for real-time biomechanical analysis of rowing on an ergometer. Measurement 44(10), 1819–1827 (2011)

    Article  Google Scholar 

  13. Sliasas, A., Tullis, S.: Modelling the effect of oar shaft bending during the rowing stroke. Proc. Inst. Mech. Eng., Part P: J. Sports Eng. Technol. 225, 265–270 (2011)

    Google Scholar 

  14. Hofmijster, M., De Koning, J., van Soest, A.J.: Estimation of energy loss at the blades in rowing: common assumptions revisited. J. Sports Sci. 28(10), 1093–1102 (2010)

    Article  Google Scholar 

  15. Cabrera, D., Ruina, A., Kleshnev, V.: A simple 1+ dimensional model of rowing mimics observed forces and motions. Hum. Mov. Sci. 25, 192–220 (2006)

    Article  Google Scholar 

  16. Serveto, S., Barré, S., Kobus, J.M., Mariot, J.P.: A three-dimensional model of the boat-oars-rower system using ADAMS and LifeMOD commercial software. Proc. Inst. Mech. Eng., Part P: J. Sports Eng. Technol. 224(1), 75–88 (2010)

    Article  Google Scholar 

  17. Rongère, F., Khalil, W., Kobus, J.M.: Dynamic modelling and simulation of rowing with a robotics formalism. In: 16th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 260–265 (2011)

    Google Scholar 

  18. Pettersson, R., Nordmark, A., Eriksson, A.: Free-time optimization of targeted movements based on temporal FE approximation. In: Proceedings of the Tenth International Conference on Computational Structures Technology. Civil-Comp Press, Kippen (2010)

    Google Scholar 

  19. Pettersson, R., Nordmark, A., Eriksson, A.: Optimization of multiple phase human movements. Multibody Syst. Dyn. (2013). doi:10.1007/s11044-013-9349-8

    MathSciNet  Google Scholar 

  20. Eriksson, A.: Temporal finite elements for target control dynamics of mechanisms. Comput. Struct. 85, 1399–1408 (2007)

    Article  MathSciNet  Google Scholar 

  21. Eriksson, A., Nordmark, A.: Temporal finite element formulation of optimal control in mechanisms. Comput. Methods Appl. Mech. Eng. 199(25–28), 1783–1792 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Baudouin, A., Hawkins, D.: A biomechanical review of factors affecting rowing performance. Br. J. Sports Med. 36(6), 396–402 (2002)

    Article  Google Scholar 

  23. Jones, J.A., Allanson-Bailey, L., Jones, M.D., Holt, C.A.: An ergometer based study of the role of the upper limbs in the female rowing stroke. In: Procedia Engineering, vol. 2, pp. 2555–2561 (2010)

    Google Scholar 

  24. O’Sullivan, F., O’Sullivan, J., Bull, A.M.J., McGregor, A.H.: Modelling multivariate biomechanical measurements of the spine during a rowing exercise. Clin. Biomech. 18(6), 488–493 (2003)

    Article  Google Scholar 

  25. Kornecki, S., Jaszczak, M.: Dynamic analysis of rowing on Concept II type C ergometer. Biol. Sport 27(3), 187–194 (2010)

    Article  Google Scholar 

  26. Kaphle, M., Eriksson, A.: Optimality in forward dynamics simulations. J. Biomech. 41(6), 1213–1221 (2008)

    Article  Google Scholar 

  27. Erdemir, A., McLean, S., Herzog, W., van den Bogert, A.J.: Model-based estimation of muscle forces exerted during movements. Clin. Biomech. 22, 131–154 (2007)

    Article  Google Scholar 

  28. Ding, J., Wexler, A.S., Binder-Macleod, S.A.: A predictive model of fatigue in human skeletal muscles. J. Appl. Physiol. 89, 1322–1332 (2000)

    Google Scholar 

  29. Gill, P.E., Murray, W., Saunders, M.A.: User’s guide for SNOPT version 7: software for large-scale nonlinear programming. Tech. rep, Stanford, CA, USA (2006)

  30. van Soest, A.J.K., Hofmijster, M.J.: Strapping rowers to their sliding seat improves performance during the start of ergometer rowing. J. Sports Sci. 27(3), 283–289 (2009)

    Article  Google Scholar 

  31. Zajac, F.E.: Muscle and tendon: properties, models, scaling and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17, 359–411 (1989)

    Google Scholar 

  32. Pennestrì, E., Stefanelli, R., Valentini, P.P., Vita, L.: Virtual musculo-skeletal model for the biomechanical analysis of the upper limb. J. Biomech. 40(6), 1350–1361 (2007)

    Article  Google Scholar 

  33. Eriksson, A., Nordmark, A.: Activation dynamics in the optimization of targeted movements. Comput. Struct. 89(11–12), 968–976 (2011)

    Article  Google Scholar 

  34. Kosterina, N., Westerblad, H., Eriksson, A.: History effect and timing of force production introduced in a skeletal muscle model. Biomech. Model. Mechanobiol. 11(7), 947–957 (2012)

    Article  Google Scholar 

  35. Consiglieri, L., Pires, E.B.: An analytical model for the ergometer rowing: inverse multibody dynamics analysis. Comput. Methods Biomech. Biomed. Eng. 12(4), 469–479 (2009)

    Article  Google Scholar 

  36. Bull, A.M.J., McGregor, A.H.: Measuring spinal motion in rowers: the use of an electromagnetic device. Clin. Biomech. 15(10), 772–776 (2000)

    Article  Google Scholar 

  37. Hase, K., Andrews, B., Zavatsky, A., Halliday, S.: Biomechanics of rowing. JSME Int. J. 45(4), 1082–1092 (2002)

    Article  Google Scholar 

  38. Baudouin, A., Hawkins, D.: Investigation of biomechanical factors affecting rowing performance. J. Biomech. 37, 969–976 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Swedish National Center for Research in Sports (CIF) and from the Swedish Research Council (VR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Eriksson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettersson, R., Nordmark, A. & Eriksson, A. Simulation of rowing in an optimization context. Multibody Syst Dyn 32, 337–356 (2014). https://doi.org/10.1007/s11044-013-9384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9384-5

Keywords

Navigation