Multibody System Dynamics

, Volume 23, Issue 4, pp 361–386 | Cite as

Intrinsic deformable joints

  • Pierangelo Masarati
  • Marco Morandini


This paper addresses the problem of reducing the constitutive behavior of relatively complex mechanical systems to lumped deformable components that connect two nodes of a multibody system. It is common practice, both in finite element and multibody system dynamics analysis, to refer the constitutive properties of lumped components to one of the nodes they connect. It is shown that this practice, here termed “attached,” could result in either underestimating or overestimating the couplings related to the finiteness of the relative rotation between the connected nodes. This work proposes an alternative formulation, here termed “intrinsic” that allows to correlate very well the behavior of general lumped deformable components with that resulting from the nonlinear finite element analysis of three-dimensional models of the components. Numerical examples, including the analysis of components that are widely used in the mechanical and aerospace industry, show how the proposed formulation can easily and accurately account for nonlinear geometrical effects, and thus deliver compact and accurate models suitable for the analysis of the global behavior of rather complex components.


Structures Constitutive equations Elasticity Nonlinear dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shabana, A.A.: Dynamics of Multibody Systems, 2nd edn. Cambridge University Press, Cambridge (1998) MATHGoogle Scholar
  2. 2.
    Schiehlen, W.: Multibody system dynamics: Roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997). doi: 10.1023/A:1009745432698 MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Shabana, A.A.: Flexible multibody dynamics: Review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997). doi: 10.1023/A:1009773505418 MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003). doi: 10.1115/1.1590354 CrossRefGoogle Scholar
  5. 5.
    Pan, W., Haug, E.J.: Dynamic simulation of general flexible multibody systems. Mech. Based Des. Struct. Mach. 27(2), 217–251 (1999). doi: 10.1080/08905459908915697 CrossRefGoogle Scholar
  6. 6.
    Wallrapp, O., Schwertassek, R.: Representation of geometric stiffening in multibody system simulation. Int. J. Numer. Methods Eng. 32, 1833–1850 (1991). doi: 10.1002/nme.1620320818 MATHCrossRefGoogle Scholar
  7. 7.
    Ambrósio, J.A.C.: Dynamics of structures undergoing gross motion and nonlinear deformations: A multibody approach. Comput. Struct. 59(6), 1001–1012 (1996). doi: 10.1016/0045-7949(95)00349-5 MATHCrossRefGoogle Scholar
  8. 8.
    Géradin, M., Cardona, A.: Flexible Multibody Dynamics: a Finite Element Approach. Wiley, Chichester (2001) Google Scholar
  9. 9.
    Shabana, A.A., Schwertassek, R.: Equivalence of the floating frame of reference approach and finite element formulations. Int. J. Non-Linear Mech. 33(3), 417–432 (1998). doi: 10.1016/S0020-7462(97)00024-3 MATHCrossRefGoogle Scholar
  10. 10.
    Ledesma, R., Ma, Z.-D., Hulbert, G., Wineman, A.: A nonlinear viscoelastic bushing element in multibody dynamics. Comput. Mech. 17(5), 287–296 (1996). doi: 10.1007/BF00368551 MATHCrossRefGoogle Scholar
  11. 11.
    Kadlowec, J., Wineman, A., Hulbert, G.: Elastomer bushing response: experiments and finite element modeling. Acta Mech. 163, 25–38 (2003). doi: 10.1007/s00707-003-1018-1 MATHGoogle Scholar
  12. 12.
    MSC/ADAMS User’s Manual, 2007 Google Scholar
  13. 13.
    Abaqus Theory Manual, Abaqus Version 6.7 edition Google Scholar
  14. 14.
    Merel, J., Wander, I., Masarati, P., Morandini, M.: Analysis of load patterns in rubber components for vehicles. In: Multibody Dynamics 2007, ECCOMAS Thematic Conference, pp. 1–19, Milan, June 25–28, 2007 Google Scholar
  15. 15.
    Pfister, F.: Bernoulli numbers and rotational kinematics. J. Appl. Mech. 65(3), 758–763 (1998). doi: 10.1115/1.2789120 CrossRefMathSciNetGoogle Scholar
  16. 16.
    Betsch, P., Menzel, A., Stein, E.: On the parametrization of finite rotations in computational mechanics. A classification of concepts with application to smooth shells. Comput. Methods Appl. Mech. Eng. 155(3–4), 273–305 (1998). doi: 10.1016/S0045-7825(97)00158-8 MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Bauchau, O.A., Trainelli, L.: The vectorial parameterization of rotation. Nonlinear Dyn. 32(1), 71–92 (2003). doi: 10.1023/A:1024265401576 MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Borri, M., Trainelli, L., Bottasso, C.L.: On representations and parameterizations of motion. Multibody Syst. Dyn. 4(2–3), 129–193 (2000). doi: 10.1023/A:1009830626597 MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Merlini, T., Morandini, M.: The helicoidal modeling in computational finite elasticity. part II: multiplicative interpolation. Int. J. Solids Struct. 41(18–19), 5383–5409 (2004). doi: 10.1016/j.ijsolstr.2004.02.026 MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Shoemake, K.: Animating rotation with quaternion curves. SIGGRAPH Comput. Graph. 19(3), 245–254 (1985) CrossRefGoogle Scholar
  21. 21.
    Borri, M., Bottasso, C.L.: An intrinsic beam model based on a helicoidal approximation—part I: Formulation. Intl. J. Numer. Methods Eng. 37, 2267–2289 (1994). doi: 10.1002/nme.1620371308 MATHCrossRefGoogle Scholar
  22. 22.
    Jelenić, G., Crisfield, M.A.: Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput. Methods Appl. Mech. Eng. 171, 141–171 (1999) MATHCrossRefGoogle Scholar
  23. 23.
    Krenk, S.: A vector format for conservative time integration of rotations. In: Multibody Dynamics 2007, ECCOMAS Thematic Conference, pp. 1–12, Milan, June 25–28, 2007 Google Scholar
  24. 24.
    Cardona, A., Geradin, M.: A beam finite element non-linear theory with finite rotations. Int. J. Numer. Methods Eng. 26, 2403–2438 (1988) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    MBDyn Input Manual (Version 1.3) (2007) Google Scholar
  26. 26.
    Merlini, T.: Recursive representation of orthonormal tensors. DIA-SR 03-02, Dip. Ing. Aerospaziale, Politecnico di Milano (2003) Google Scholar
  27. 27.
    MBDyn Technical Manual (Version 1.3) (2007) Google Scholar
  28. 28.
    Trainelli, L.: On the parameterization of rotation and rigid motion: a comprehensive picture. In: 17th Congresso nazionale AIDAA, pp. 1349–1362, Rome, Italy, September 15–19, 2003 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria AerospazialePolitecnico di MilanoMilanItaly

Personalised recommendations