Skip to main content
Log in

Intrinsic deformable joints

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the problem of reducing the constitutive behavior of relatively complex mechanical systems to lumped deformable components that connect two nodes of a multibody system. It is common practice, both in finite element and multibody system dynamics analysis, to refer the constitutive properties of lumped components to one of the nodes they connect. It is shown that this practice, here termed “attached,” could result in either underestimating or overestimating the couplings related to the finiteness of the relative rotation between the connected nodes. This work proposes an alternative formulation, here termed “intrinsic” that allows to correlate very well the behavior of general lumped deformable components with that resulting from the nonlinear finite element analysis of three-dimensional models of the components. Numerical examples, including the analysis of components that are widely used in the mechanical and aerospace industry, show how the proposed formulation can easily and accurately account for nonlinear geometrical effects, and thus deliver compact and accurate models suitable for the analysis of the global behavior of rather complex components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shabana, A.A.: Dynamics of Multibody Systems, 2nd edn. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  2. Schiehlen, W.: Multibody system dynamics: Roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997). doi:10.1023/A:1009745432698

    Article  MATH  MathSciNet  Google Scholar 

  3. Shabana, A.A.: Flexible multibody dynamics: Review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997). doi:10.1023/A:1009773505418

    Article  MATH  MathSciNet  Google Scholar 

  4. Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003). doi:10.1115/1.1590354

    Article  Google Scholar 

  5. Pan, W., Haug, E.J.: Dynamic simulation of general flexible multibody systems. Mech. Based Des. Struct. Mach. 27(2), 217–251 (1999). doi:10.1080/08905459908915697

    Article  Google Scholar 

  6. Wallrapp, O., Schwertassek, R.: Representation of geometric stiffening in multibody system simulation. Int. J. Numer. Methods Eng. 32, 1833–1850 (1991). doi:10.1002/nme.1620320818

    Article  MATH  Google Scholar 

  7. Ambrósio, J.A.C.: Dynamics of structures undergoing gross motion and nonlinear deformations: A multibody approach. Comput. Struct. 59(6), 1001–1012 (1996). doi:10.1016/0045-7949(95)00349-5

    Article  MATH  Google Scholar 

  8. Géradin, M., Cardona, A.: Flexible Multibody Dynamics: a Finite Element Approach. Wiley, Chichester (2001)

    Google Scholar 

  9. Shabana, A.A., Schwertassek, R.: Equivalence of the floating frame of reference approach and finite element formulations. Int. J. Non-Linear Mech. 33(3), 417–432 (1998). doi:10.1016/S0020-7462(97)00024-3

    Article  MATH  Google Scholar 

  10. Ledesma, R., Ma, Z.-D., Hulbert, G., Wineman, A.: A nonlinear viscoelastic bushing element in multibody dynamics. Comput. Mech. 17(5), 287–296 (1996). doi:10.1007/BF00368551

    Article  MATH  Google Scholar 

  11. Kadlowec, J., Wineman, A., Hulbert, G.: Elastomer bushing response: experiments and finite element modeling. Acta Mech. 163, 25–38 (2003). doi:10.1007/s00707-003-1018-1

    MATH  Google Scholar 

  12. MSC/ADAMS User’s Manual, 2007

  13. Abaqus Theory Manual, Abaqus Version 6.7 edition

  14. Merel, J., Wander, I., Masarati, P., Morandini, M.: Analysis of load patterns in rubber components for vehicles. In: Multibody Dynamics 2007, ECCOMAS Thematic Conference, pp. 1–19, Milan, June 25–28, 2007

  15. Pfister, F.: Bernoulli numbers and rotational kinematics. J. Appl. Mech. 65(3), 758–763 (1998). doi:10.1115/1.2789120

    Article  MathSciNet  Google Scholar 

  16. Betsch, P., Menzel, A., Stein, E.: On the parametrization of finite rotations in computational mechanics. A classification of concepts with application to smooth shells. Comput. Methods Appl. Mech. Eng. 155(3–4), 273–305 (1998). doi:10.1016/S0045-7825(97)00158-8

    Article  MATH  MathSciNet  Google Scholar 

  17. Bauchau, O.A., Trainelli, L.: The vectorial parameterization of rotation. Nonlinear Dyn. 32(1), 71–92 (2003). doi:10.1023/A:1024265401576

    Article  MATH  MathSciNet  Google Scholar 

  18. Borri, M., Trainelli, L., Bottasso, C.L.: On representations and parameterizations of motion. Multibody Syst. Dyn. 4(2–3), 129–193 (2000). doi:10.1023/A:1009830626597

    Article  MATH  MathSciNet  Google Scholar 

  19. Merlini, T., Morandini, M.: The helicoidal modeling in computational finite elasticity. part II: multiplicative interpolation. Int. J. Solids Struct. 41(18–19), 5383–5409 (2004). doi:10.1016/j.ijsolstr.2004.02.026

    Article  MATH  MathSciNet  Google Scholar 

  20. Shoemake, K.: Animating rotation with quaternion curves. SIGGRAPH Comput. Graph. 19(3), 245–254 (1985)

    Article  Google Scholar 

  21. Borri, M., Bottasso, C.L.: An intrinsic beam model based on a helicoidal approximation—part I: Formulation. Intl. J. Numer. Methods Eng. 37, 2267–2289 (1994). doi:10.1002/nme.1620371308

    Article  MATH  Google Scholar 

  22. Jelenić, G., Crisfield, M.A.: Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput. Methods Appl. Mech. Eng. 171, 141–171 (1999)

    Article  MATH  Google Scholar 

  23. Krenk, S.: A vector format for conservative time integration of rotations. In: Multibody Dynamics 2007, ECCOMAS Thematic Conference, pp. 1–12, Milan, June 25–28, 2007

  24. Cardona, A., Geradin, M.: A beam finite element non-linear theory with finite rotations. Int. J. Numer. Methods Eng. 26, 2403–2438 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. MBDyn Input Manual (Version 1.3) (2007)

  26. Merlini, T.: Recursive representation of orthonormal tensors. DIA-SR 03-02, Dip. Ing. Aerospaziale, Politecnico di Milano (2003)

  27. MBDyn Technical Manual (Version 1.3) (2007)

  28. Trainelli, L.: On the parameterization of rotation and rigid motion: a comprehensive picture. In: 17th Congresso nazionale AIDAA, pp. 1349–1362, Rome, Italy, September 15–19, 2003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierangelo Masarati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masarati, P., Morandini, M. Intrinsic deformable joints. Multibody Syst Dyn 23, 361–386 (2010). https://doi.org/10.1007/s11044-010-9194-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-010-9194-y

Keywords

Navigation