Advertisement

Multibody System Dynamics

, 23:99 | Cite as

An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometry

  • Juhwan Choi
  • Han Sik Ryu
  • Chang Wan Kim
  • Jin Hwan Choi
Article

Abstract

Dynamic analysis of many mechanical systems often involves contacts among rigid bodies. When calculating the contact force with a compliant contact force model, a penetration depth and a contact reference frame (a contact point and normal and tangent directions) should be determined from the geometrical information of the rigid body surfaces. In order to improve the speed and robustness of the contact analysis, this paper proposes a contact search algorithm for surfaces composed of triangles. This algorithm is divided into two parts, the pre-search and the detailed search. In the pre-search, a bounding box tree and an overlap test are used to find intersecting triangle pairs, and triangle connectivity information is used to identify and separate multiple contact regions. Then an efficient and robust detailed search algorithm is proposed, where the penetration depth and contact reference frame are determined from the results of the pre-search. Finally, the contact force for each contact region is calculated from a modified compliant contact force model. Numerical examples are also presented to illustrate the accuracy and performance.

Keywords

Multibody dynamics Contact search algorithm Penetration depth Multiple contact region Compliant contact force model 

References

  1. 1.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985) MATHGoogle Scholar
  2. 2.
    Hertz, H.: On the contact of elastic solids. J. Reine Angew. Math. 92, 156–171 (1882) Google Scholar
  3. 3.
    Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. ASME J. Appl. Mech. 42, 440–445 (1975) Google Scholar
  4. 4.
    Khulief, Y.A., Shabana, A.A.: A continuous force model for the impact analysis of flexible multibody systems. Mech. Mach. Theory 22(3), 213–224 (1987) CrossRefGoogle Scholar
  5. 5.
    Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. ASME J. Mech. Des. 112, 369–376 (1990) CrossRefGoogle Scholar
  6. 6.
    Lankarani, H.M., Nikravesh, P.E.: Canonical impulse-momentum equations for impact analysis of multibody system. ASME J. Mech. Des. 180, 180–186 (1992) CrossRefGoogle Scholar
  7. 7.
    Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. J. Nonlinear Dyn. 5, 193–207 (1994) Google Scholar
  8. 8.
    Sharf, I., Zhang, Y.: A contact force solution for non-colliding contact dynamics simulation. Multibody Syst. Dyn. 16, 263–290 (2006) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    van den Bergen, G.: Collision Detection in Interactive 3D Environments. Morgan Kaufmann, San Mateo (2003) Google Scholar
  10. 10.
    Arvo, J., Kirk, D.: A survey of ray tracing acceleration techniques. In: An Introduction to Ray Tracing. Morgan Kaufmann, San Francisco, pp. 201–262 (1989) Google Scholar
  11. 11.
    Lin, M.C., Manocha, D.: Collision and Proximity Queries. Handbook of Discrete and Computational Geometry, 2nd edn. Chapman & Hall/CRC, Lonfon/Boca Raton, pp. 787–808 (2004) Google Scholar
  12. 12.
    Ericson, C.: Real-Time Collision Detection. Morgan Kaufmann, San Mateo (2004) Google Scholar
  13. 13.
    Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann, G., Raghupathi, L., Fuhrmann, A., Cani, M.P., Faure, F., Magnenat-Thalmann, N., Strasser, W., Volino, P.: Collision detection for deformable objects. Comput. Graph. Forum 24(1), 61–81 (2005) CrossRefGoogle Scholar
  14. 14.
    van den Bergen, G.: Efficient collision detection of complex deformable models using AABB trees. J. Graph. Tools 2(4), 1–14 (1997) MATHGoogle Scholar
  15. 15.
    Gottschalk, S.: Separating axis theorem. Technical Report TR96-024, Dept. of Computer Science, UNC Chapel Hill (1996) Google Scholar
  16. 16.
    Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A hierarchical structure for rapid interference detection, In: Proc. of ACM Siggraph’96, pp. 171–180 (1996) Google Scholar
  17. 17.
    Gottschalk, S., Lin, M.C., Manocha, D.: RAPID, http://www.cs.unc.edu/~geom/OBB/OBBT.html (1997)
  18. 18.
    Terdiman, P.: OPCODE, http://www.codercorner.com/Opcode.htm (2003)
  19. 19.
    Teschner, M., Heidelberger, B., Müller, M., Pomeranets, D., Gross, M.: Optimized spatial hashing for collision detection of deformable objects. In: Proc. of Vision, Modeling, and Visualization, pp. 47–54 (2003) Google Scholar
  20. 20.
    Cho, H.J., Bae, D.S., Ryu, H.S., Choi, J.H.: An efficient contact search algorithm using the relative coordinate system for multibody system dynamics. In: Proc. of the 1st Asian Conference on Multibody Dynamics, Iwaki, Fukushima, Japan, pp. 520–527 (2002) Google Scholar
  21. 21.
    Hippmann, G.: An algorithm for compliant contact between complexly shaped bodies. Multibody Syst. Dyn. 12, 345–362 (2004) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Zhang, L., Kim, Y.J., Varadhan, G., Manocha, D.: Generalized penetration depth computation. Comput. Aided Des. 39, 625–638 (2007) CrossRefGoogle Scholar
  23. 23.
    Dobkin, D., Hershberger, J., Kirkpatrick, D., Suri, S.: Computing the intersection-depth of polyhedra. Algorithmica 9, 518–533 (1993) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Heidelberger, B., Teschner, M., Keiser, R., Müller, M., Gross, M.: Consistent penetration depth estimation for deformable collision response. In: Proc. of Vision, Modeling, and Visualization, pp. 339–346 (2004) Google Scholar
  25. 25.
    Faure, F., Barbier, S., Allard, J., Falipou, F.: Image-based collision detection and response between arbitrary volume objects. In: ACM Siggraph/Eurographics Symposium on Computer Animation (2008) Google Scholar
  26. 26.
    Govindaraju, N.K., Kabul, I., Lin, M.C., Manocha, D.: Fast continuous collision detection among deformable models using graphics processors. Comput. Graph. 31(1), 5–14 (2007) CrossRefGoogle Scholar
  27. 27.
    Sud, A., Otaduy, M.A., Manocha, D.: DIFI: Fast 3D distance field computation using graphics hardware. Comput. Graph. Forum 23(3), 557–566 (2004) CrossRefGoogle Scholar
  28. 28.
    Careym, G.F.: Computational Grids: Generations, Adaptation, and Solution Strategies. Taylor & Francis, London (1997) Google Scholar
  29. 29.
    RecurDynTM Help Library: FunctionBay, Inc., http://www.functionbay.co.kr/ (2008)
  30. 30.
    Adams, M.D.: Manual: MSC Software, http://www.mscsoftware.com/ (2008)
  31. 31.
    Bae, D.S., Han, J.M., Yoo, H.H.: A generalized recursive formulation for constrained mechanical system dynamics. Mech. Struct. Mach. 27(3), 293–315 (1999) CrossRefGoogle Scholar
  32. 32.
    Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J. Appl. Mech. 60, 371–375 (1993) MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Mortenson, M.E.: Geometric Modeling, 3rd edn. Industrial Press Inc., New York (2006) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Juhwan Choi
    • 1
  • Han Sik Ryu
    • 2
  • Chang Wan Kim
    • 3
  • Jin Hwan Choi
    • 4
  1. 1.School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulRepublic of Korea
  2. 2.FunctionBay, Inc.GyeonggiRepublic of Korea
  3. 3.School of Mechanical EngineeringKonKuk UniversitySeoulRepublic of Korea
  4. 4.Department of Mechanical EngineeringKyungHee UniversityGyeonggiRepublic of Korea

Personalised recommendations