Advertisement

Multibody System Dynamics

, 21:37 | Cite as

Collision with friction; Part A: Newton’s hypothesis

  • Shlomo Djerassi
Article

Abstract

This paper deals with collision with friction. In Part A, equations governing a one-point collision of planar, simple nonholonomic systems are generated. Expressions for the normal and tangential impulses, the normal and tangential velocities of separation of the colliding points, and the change of the system mechanical energy are written for three types of collision (i.e., forward sliding, sticking, etc.). These together with Routh’s semigraphical method and Coulomb’s coefficient of friction are used to show that the algebraic signs of four, newly-defined, configuration-related parameters, not all independent, span five cases of system configuration. For each, the ratio between the tangential and normal components of the velocity of approach, called α, determine the type of collision, which once found, allows the evaluation of the associated normal and tangential impulses and ultimately the changes in the motion variables. The analysis of these cases indicates that the calculated mechanical energy may increase if sticking or reverse sliding occur. In Part B, theories based on Poisson’s and Stronge’s hypotheses are presented with more encouraging results.

Keywords

Collision Collision with friction Newton’s hypothesis Routh’s graph Coulombs’ coefficient of friction 

References

  1. 1.
    Najafabadi, S.A.M., Kovecses, J., Angeles, J.: A comparative study of approaches to dynamics modeling of contact transitions in multibody systems. In: Proceedings of IDETC/CIE 2005 Conferences, paper DET2005-85418, Long Beach, CA, 24–28 September 2005 Google Scholar
  2. 2.
    Kane, T.R.: A dynamic puzzle. Stanford Mech. Alumni Club Newsletter, 6 (1984) Google Scholar
  3. 3.
    Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles & Rigid Bodies. Cambridge University Press, Cambridge (1904; reprint 1993) MATHGoogle Scholar
  4. 4.
    Mason, M.T., Wang, Y.: On the Inconsistentcy of Rigid-Body Frictional Planar Mechanics. IEEE Int. Conference on Robotics and Autom., pp. 524–528. Philadelphia, PA (1988) Google Scholar
  5. 5.
    Routh, E.J.: Dynamics of a System of Rigid Bodies, Elementary Part, 7th edn. Dover, NY (1905) Google Scholar
  6. 6.
    Goldsmith, W.: Impact: The Theory and Physical Behavior of Colliding Solids. Edward Arnold, London (1960) Google Scholar
  7. 7.
    Brach, R.M.: Friction, restitution, and energy loss in planar collision. J. Appl. Mech. 51, 164–170 (1984) MATHGoogle Scholar
  8. 8.
    Keller, J.B.: Impact with friction. J. Appl. Mech. 53, 1–4 (1986) MATHCrossRefGoogle Scholar
  9. 9.
    Battle, J.A.: On Newton’s and Poisson’s rules of percussive dynamics. J. Appl. Mech. 60, 376–381 (1993) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Stronge, W.J.: Friction in collision: resolution of a paradox. J. Appl. Phys. 69(2), 610–612 (1991) CrossRefGoogle Scholar
  11. 11.
    Stronge, W.T.: Swerve during three-dimensional impact of rough bodies. J. Appl. Mech. 61, 605–611 (1994) MATHCrossRefGoogle Scholar
  12. 12.
    Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000) MATHGoogle Scholar
  13. 13.
    Boulanger, G.: Note sur le Choc avec Frottement des Corps non Parfaitment Elastique. Revue Sci. 77, 325–327 (1939) Google Scholar
  14. 14.
    Bhatt, V., Koechling, J.: Three-dimensional frictional rigid-body impact. J. Appl. Mech. 62, 893–898 (1995) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Battle, J.A.: Rough balanced collisions. J. Appl. Mech. 63, 168–172 (1996) CrossRefGoogle Scholar
  16. 16.
    Battle, J.A.: The sliding velocities flow of rough collisions in multibody systems. J. Appl. Mech. 63, 804–809 (1996) CrossRefGoogle Scholar
  17. 17.
    Han, I., Gilmore, B.J.: Impact Analysis for Multiple-Body Systems with Friction and Sliding Contact. In: Sathydev, D.P. (ed.) Flexible Assembly Systems, pp. 99–108. NY (1989) Google Scholar
  18. 18.
    Brach, R.M.: Rigid body collision. J. Appl. Mech. 56, 133–138 (1989) Google Scholar
  19. 19.
    Smith, C.E.: Predicting rebounds using rigid-body dynamics. J. Appl. Mech. 58, 754–758 (1991) CrossRefGoogle Scholar
  20. 20.
    Wang, Y., Mason, M.T.: Two-dimensional rigid-body collision with friction. J. Appl. Mech. 59, 635–642 (1992) MATHCrossRefGoogle Scholar
  21. 21.
    Ivanov, A.P.: Energetics of a collision with friction. J. Appl. Math. Mech. 56(4), 527–534 (1992) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Smith, C.E., Liu, P.-P.: Coefficient of restitution. J. Appl. Mech. 59, 963–969 (1992) MATHCrossRefGoogle Scholar
  23. 23.
    Moreau, J.J.: Some numerical methods in multibody dynamics: application to granular material. Eur. J. Mech. A/Solids 13(4), 93–114 (1994) MATHMathSciNetGoogle Scholar
  24. 24.
    Pfieffer, F.: The idea of complementarity in multibody dynamics. Arch. Appl. Mech. 72, 807–816 (2003) Google Scholar
  25. 25.
    Chatterjee, A., Ruina, A.: A new algebraic rigid-body collision law based on impulse space consideration. J. Appl. Mech. 65, 939–951 (1998) CrossRefGoogle Scholar
  26. 26.
    Chatterjee, A., Ruina, A.: Two interpretations of rigidity in rigid-body collisions. J. Appl. Mech. 65, 894–900 (1998) CrossRefGoogle Scholar
  27. 27.
    Wittenburg, J.: Dynamics of Systems of Rigid Bodies. B.G. Teubner, Stuttgart (1977) MATHGoogle Scholar
  28. 28.
    Wang, D., Conti, C., Beale, D.: Interference impact analysis of multibody systems. J. Mech. Design 121, 128–135 (1999) CrossRefGoogle Scholar
  29. 29.
    Marghitu, D.B., Hurmuzlu, Y.: Three-dimensional rigid-body collisions with multiple contact points. J. Appl. Mech. 62, 725–732 (1995) MATHCrossRefGoogle Scholar
  30. 30.
    Lankarani, H.M.: A Poisson-based formulation for frictional impact analysis of multibody mechanical systems with open or closed kinematical chains. J. Mech. Design 122, 489–497 (2000) CrossRefGoogle Scholar
  31. 31.
    Kane, T.R., Levinson, D.A.: Dynamics: Theory and Application. McGraw Hill, New York (1985) Google Scholar
  32. 32.
    Newton, I.: Philosophias Naturalis Principia Mathematica. Royal Soc. Press, London (1686) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.RafaelHaifaIsrael

Personalised recommendations