Advertisement

Multibody System Dynamics

, Volume 20, Issue 4, pp 307–325 | Cite as

Solving the kinematics and dynamics of a modular spatial hyper-redundant manipulator by means of screw theory

  • J. Gallardo-Alvarado
  • C. R. Aguilar-Nájera
  • L. Casique-Rosas
  • L. Pérez-González
  • J. M. Rico-Martínez
Article

Abstract

In this contribution, a systematic methodology for solving the kinematic and dynamic analyses of a modular spatial hyper-redundant manipulator built with an optional number of serially connected three-legged in-parallel manipulators are presented.

First, the kinematics and dynamics of the base module are carried out using the theory of screws and the principle of virtual work. Next, the expressions obtained for the base module are extended without significant effort to the spatial hyper-redundant manipulator under study. Finally, the proposed methodology of analysis is applied to a 18 degrees of freedom hyper-redundant manipulator.

Keywords

Hyper-redundant manipulator Modularity Driving force Screw theory Forward dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yanqiong, F., Qinglei, D., Xifang, Z.: Modular structure of a self-reconfigurable robot. Front. Mech. Eng. China 2, 116–119 (2007) CrossRefGoogle Scholar
  2. 2.
    Ropponen, T., Nakamura, Y.: Singularity-free parameterization and performance analysis of actuation redundancy. In: IEEE International Conference on Robotics and Automation, pp. 806–811 (1990) Google Scholar
  3. 3.
    Zergeroglu, E., Dawson, D.D., Walker, I.W., Setlur, P.: Nonlinear tracking control of kinematically redundant robot manipulators. IEEE/ASME Trans. Mechatron. 9(1), 129–132 (2004) CrossRefGoogle Scholar
  4. 4.
    Kim, S.W., Park, K.B., Lee, J.J.: Redundancy resolution of robot manipulators using optimal kinematic control. In: IEEE International Conference on Robotics and Automation, pp. 683–688 (1994) Google Scholar
  5. 5.
    Hsia, T.C., Guo, Z.Y.: New inverse kinematic algorithms for redundant robots. J. Robot. Syst. 8, 117–132 (1991) MATHCrossRefGoogle Scholar
  6. 6.
    Suh, I.H., Shin, K.G.: Coordination of dual robot arms using kinematic redundancy. IEEE Trans. Robot. Autom. 5(2), 236–242 (1989) CrossRefGoogle Scholar
  7. 7.
    Nguyen, L.A., Walker, I.D., Defigueiredo, R.J.P.: Dynamic control of flexible, kinematically redundant robot manipulators. IEEE Trans. Robot. Autom. 8(6), 759–767 (1992) CrossRefGoogle Scholar
  8. 8.
    Chen, T.H., Cheng, F.T., Sun, Y.Y., Hung, M.H.: Torque optimization schemes for kinematically redundant manipulators. J. Robot. Syst. 11, 257–269 (1994) MATHCrossRefGoogle Scholar
  9. 9.
    Dasgupta, B., Mruthyunjaya, T.S.: Force redundancy in parallel manipulators: theoretical and practical issues. Mech. Mach. Theory 33, 727–742 (1998) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gallardo-Alvarado, J., Alici, G., Aguilar-Nájera, C., Pérez-González, L.: A new family of non-overconstrained redundantly-actuated parallel manipulators. Multibody Syst. Dyn. (2007, submitted) Google Scholar
  11. 11.
    Mohamed, M.G., Gosselin, C.M.: Design and analysis of kinematically redundant parallel manipulators with configurable platforms. IEEE Trans. Robot. 21, 277–287 (2005) CrossRefGoogle Scholar
  12. 12.
    Wang, J., Gosselin, C.M.: Kinematic analysis and design of kinematically redundant parallel manipulators. ASME J. Mech. Des. 126, 109–118 (2004) CrossRefGoogle Scholar
  13. 13.
    Bi, Z.M., Gruver, W.A., Zhang, W.J., Lang, S.Y.T.: Automated modeling of modular robotic configurations. Robot. Autom. Syst. 54, 1015–1025 (2006) CrossRefGoogle Scholar
  14. 14.
    Kryriakopoulos, K.J., Migadis, G., Sarriageorgidis, K.: The NTUA snake: Design, planar kinematics, and motion planning. J. Robot. Syst. 16, 37–72 (1999) CrossRefGoogle Scholar
  15. 15.
    Shugen, M.: Naoki T.: Analysis of creeping locomotion of a snake-like robot on a slope. Auton. Robots 20, 15–23 (2006) CrossRefGoogle Scholar
  16. 16.
    Paljug, E., Ohm, T., Hayati, S.: The JPL serpentine robot: a 12-DOF system for inspection. In: Proceedings of the IEEE International Conference on Robotics and Automation, Nagoya, Japan, pp. 3143–3148 (1995) Google Scholar
  17. 17.
    Pettinato, J.S.: Stephanou, h.E.: Manipulability and stability of a tentacle based robot manipulator. In: Proceedings of the IEEE International Conference on Robotics and Automation, Scottsdale, AZ, vol. 1, pp. 458–463 (1989) Google Scholar
  18. 18.
    Hanan, M.W., Walker, I.A.: Kinematics and the implementation of an elephant’s trunk manipulator and other continuum style robots. J. Robot. Syst. 20, 45–63 (2003) CrossRefGoogle Scholar
  19. 19.
    Tanev, T.K.: Kinematics of a hybrid (parallel-serial) robot manipulator. Mech. Mach. Theory 35, 1183–1196 (2000) CrossRefGoogle Scholar
  20. 20.
    Zheng, X.Z., Bin, H.Z., Luo, Y.G.: Kinematic analysis of a hybrid serial-parallel manipulator. Int. J. Adv. Manuf. Technol. 23, 925–930 (2004) CrossRefGoogle Scholar
  21. 21.
    Carbone, G., Ceccarelli, M.: A serial-parallel robotic architecture for surgical tasks. Robotica 23, 345–354 (2005) CrossRefGoogle Scholar
  22. 22.
    Carbone, G., Ceccarelli, M.: A stiffness analysis for a hybrid parallel-serial manipulator. Robotica 22, 567–576 (2005) CrossRefGoogle Scholar
  23. 23.
    Gallardo-Alvarado, J.: Kinematics of a hybrid manipulator by means of screw theory. Multibody Syst. Dyn. 14, 345–366 (2005) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lu, Y., Leinonen, T.: Solution and simulation of position-orientation for multi-spatial 3-RPS parallel mechanisms in series connection. Multibody Syst. Dyn. 14, 47–60 (2005) CrossRefMATHGoogle Scholar
  25. 25.
    Lu, Y., Hu, B.: Solving driving forces of 2(3-SPR) serial-parallel manipulator by CAD variation geometry approach. ASME J. Mech. Des. 128, 1349–1351 (2006) CrossRefGoogle Scholar
  26. 26.
    Hunt, K.H.: Structural kinematics of in-parallel actuated robot arms. ASME J. Mech. Transpr. Autom. Des. 105, 705–712 (1983) Google Scholar
  27. 27.
    Lee, K.M., Sha, D.K.: Kinematic analysis of a three-degree-of-freedom in-parallel actuated manipulator. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 1, pp. 345–350 (1987) Google Scholar
  28. 28.
    Kim, H.S., Tsai, L.-W.: Kinematic synthesis of a spatial 3-RPS parallel manipulator. ASME J. Mech. Des. 125, 92–97 (2003) CrossRefGoogle Scholar
  29. 29.
    Liu, C.H., Cheng, S.: Direct singular positions of 3RPS parallel manipulators. ASME J. Mech. Des. 126, 1006–1016 (2004) CrossRefGoogle Scholar
  30. 30.
    Huang, Z., Fang, Y.: Kinematic characteristics analysis of 3 DOF in-parallel actuated pyramid mechanism. Mech. Mach. Theory 31, 1009–1018 (1996) CrossRefGoogle Scholar
  31. 31.
    Fang, Y., Huang, Z.: Kinematics of a three-degree-of-freedom in-parallel actuated manipulator mechanism. Mech. Mach. Theory 32, 789–796 (1997) CrossRefGoogle Scholar
  32. 32.
    Huang, Z., Wang, J.: Identification of principal screws of 3-DOF parallel manipulators by quadric degeneration. Mech. Mach. Theory 36, 893–911 (2001) MATHCrossRefGoogle Scholar
  33. 33.
    Agrawal, S.K.: Study of an in-parallel mechanism using reciprocal screws. In: Proceedings of 8th World Congress on TMM 405-408 (1990) Google Scholar
  34. 34.
    Huang, Z., Wang, J.: Instantaneous motion analysis of deficient-rank 3-DOF parallel manipulators by means of principal screws. In: Proceedings of A Symposium Commemorating the Legacy, Works, and Life of Sir Robert Stawell Ball Upon the 100th Aniversary of A Treatise on the Theory of Screws (2000) Google Scholar
  35. 35.
    Huang, Z., Wang, J., Fang, Y.: Analysis of instantaneous motions of deficient-rank 3-RPS parallel manipulators. Mech. Mach. Theory 37, 229–240 (2002) MATHCrossRefGoogle Scholar
  36. 36.
    Gallardo, J., Orozco, H., Rodríguez, R., Rico, J.M.: Kinematics of a class of parallel manipulators which generates structures with three limbs. Multibody Syst. Dyn. 17, 27–46 (2007) MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Gallardo, J., Orozco, H., Rico, J.M.: Kinematics of 3-RPS parallel manipulators by means of screw theory. Int. J. Adv. Manuf. Technol. Published on line (2007): http://dx.doi.org/10.1007/s00170-006-0851-5
  38. 38.
    Alizade, R., Bayram, C.: Structural synthesis of parallel manipulators. Mech. Mach. Theory 39, 857–870 (2004) MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Zlatanov, D., Bonev, I.A., Gosselin, C.M.: Constraint singularities of parallel mechanisms. In: IEEE International Conference on Robotics and Automation, ICRA 2002, vol. 1, pp. 496–502 (2002) Google Scholar
  40. 40.
    Innocenti, C., Parenti-Castelli, V.: Direct position analysis of the Stewart platform mechanism. Mech. Mach. Theory 35, 611–621 (1990) CrossRefGoogle Scholar
  41. 41.
    Tsai, L.-W.: Robot Analysis. Wiley, New York (1999) Google Scholar
  42. 42.
    Rico, J.M., Duffy, J.: An Application of screw algebra to the acceleration analysis of serial chains. Mech. Mach. Theory 31, 445–457 (1996) CrossRefGoogle Scholar
  43. 43.
    Rico, J.M., Gallardo, J., Duffy, J.: Screw theory and higher order kinematic analysis of open serial and closed chains. Mech. Mach. Theory 34, 559–586 (1999) MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Rico, J.M., Duffy, J.: Forward and inverse acceleration analyses of in-parallel manipulators. ASME J. Mech. Des. 122, 299–303 (2000) CrossRefGoogle Scholar
  45. 45.
    Gallardo, J., Rico, J.M.: Screw theory and helicoidal fields. In: Proceedings of the ASME 1998 Design Engineering Technical Conference 1998. CD-ROM format, Paper DETC98/MECH-5893 (1998) Google Scholar
  46. 46.
    Lipkin, H.: Time derivatives of screws with applications to dynamic and stiffness. Mech. Mach. Theory 40, 259–273 (2005) MATHCrossRefGoogle Scholar
  47. 47.
    Gallardo, J., Rico, J.M., Frisoli, A., Checcacci, D., Bergamasco, M.: Dynamics of parallel manipulators by means of screw theory. Mech. Mach. Theory 38, 1113–1131 (2003) MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Gallardo-Alvarado, J., Rico-Martínez, J.M.: Jerk influence coefficients, via screw theory, of closed chains. Meccanica 36, 213–228 (2001) MATHCrossRefGoogle Scholar
  49. 49.
    Ball, R.S.: A Treatise on the Theory of Screws. Cambridge University Press, Reprinted 1998 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • J. Gallardo-Alvarado
    • 1
  • C. R. Aguilar-Nájera
    • 1
  • L. Casique-Rosas
    • 1
  • L. Pérez-González
    • 1
  • J. M. Rico-Martínez
    • 2
  1. 1.Instituto Tecnológico de CelayaDepartment of Mechanical EngineeringCelayaMexico
  2. 2.Universidad de GuanajuatoFIMEESalamancaMexico

Personalised recommendations