Multibody System Dynamics

, Volume 18, Issue 4, pp 511–530

# The analysis and simulation for three-dimensional impact with friction

• Zhao Zhen
• Caishan Liu
Article

## Abstract

This paper presents a full discussion on how to formulate and evaluate the problem of spatial impact with friction in multibody systems. By considering that impact is experiencing a very short but finite time, we have established the differential equations of motion with normal impulse as a ‘time-like’ independent differential variable to describe the process of impact. A reliable numerical formulation, which can deal with the complex motions appearing in impact such as slip, stick and resumption of slip, has been developed by using difference schemes. The results indicate that the formulation and the numerical method presented in this paper can well solve the problems of 3D impact with friction by a comparison with the theoretical results existing in literature.

## Keywords

Numerical method 3D impact Friction Impulse Differential equation

## References

1. 1.
Ivanov, A.P.: The problem of constrained impact. J. Appl. Math. Mech. 61(3), 341–353 (1997)
2. 2.
Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000)
3. 3.
Pheiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996) Google Scholar
4. 4.
Glocker, C., Studer, C.: Formulation and preparation for numerical evaluation of linear complementarity systems in dynamics. Multibody Syst. Dyn. 13, 447–463 (2005)
5. 5.
Yao, W., Chen, B., Liu, C.: Energetic coefficient of restitution for planar impact in multi-rigid-body systems with friction. Int. J. Impact Eng. 31, 255–265 (2005)
6. 6.
Schiehlen, W., Seiferied, R.: Three approaches for elastodynamic contact in multibody systems. Multibody Syst. Dyn. 12, 1–16 (2004)
7. 7.
Hu, B., Eberhard, P., Schiehlen, W.: Comparison of analytical and experimental results for longitudinal impacts on elastic rods. J. Vib. Control 9, 157–174 (2003)
8. 8.
Seiferied, R., Schiehlen, W., Eberhard, P.: Numerical and experimental evaluation of coefficient of restitution for repeated impacts. Int. J. Impact Eng. 32, 508–524 (2005)
9. 9.
Escalona, J.L., Sany, J.R., Shabana, A.A.: On the use of the restitution condition in flexible body dynamics. Nonlinear Dyn. 30, 71–86 (2002)
10. 10.
Seifried, R., Hu, B., Eberhard, P.: Numerical and experimental investigation of radial impacts on a half-circular plate. Multibody Syst. Dyn. 9, 265–281 (2003)
11. 11.
Yu, W., Matthew, T.M.: Two-dimensional rigid-body collisions with friction. Trans. ASME J. Appl. Mech. 59, 635–642 (1992)
12. 12.
Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications. McGraw–Hill, New York (1985) Google Scholar
13. 13.
Keller, J.B.: Impact with friction. Trans. ASME J. Appl. Mech. 53, 1–4 (1986)
14. 14.
Stronge, W.J.: Swerve during three-dimensional impact of rough rigid bodies. Trans. ASME J. Appl. Mech. 61, 605–611 (1994)
15. 15.
Chatterjee, A., Ruina, A.: Two interpretations of rigidity in rigid body collisions. Trans. ASME J. Appl. Mech. 65, 894–900 (1997)
16. 16.
Smith, C.E.: Predicting rebounds using rigid-body dynamics. Trans. ASME J. Appl. Mech. 58, 754–758 (1991)
17. 17.
Brach, R.M.: Impact coefficient and tangential impacts. Trans. ASME J. Appl. Mech. 64, 1014–1016 (1997)
18. 18.
Bhatt, V., Koechling, J.: Partitioning the parameter space according to different behaviors during three-dimensional. Trans. ASME J. Appl. Mech. 62, 740–746 (1995)
19. 19.
Bhatt, V.: Three-dimensional frictional rigid-body impact. Trans. ASME J. Appl. Mech. 62, 893–898 (1995)
20. 20.
Batlle, J.A.: Rough balanced collisions. Trans. ASME J. Appl. Mech. 63, 168–172 (1996)
21. 21.
Routh, E.J.: Dynamics of a System of Rigid Bodies. Macmillan, London (1897) Google Scholar
22. 22.
Kuninaka, H., Hayakawa, H.: Anomalous behavior of the coefficient of normal restitution in oblique impact. Phys. Rev. Lett. 93(15), 154301 (2004)
23. 23.
Weir, W., Tallon, S.: The coefficient of restitution for normal incident, low velocity particle impacts. Chem. Eng. Sci. 60, 3637–3647 (2005)
24. 24.
Louge, M.Y., Adams, M.E.: Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an elastoplastic plate. Phys. Rev. E 65, 021303 (2002)
25. 25.
Wu, C.Y., Li, L.Y., Thornton, C.: Rebound behaviour of spheres for plastic impacts. Int. J. Impact Eng. 28, 929–946 (2003)
26. 26.
Sondergaard, R., Chaney, K., Brennen, C.: Measurements of sloid sphere bouncing off flat plates. J. Appl. Mech. 57, 694–699 (1990) Google Scholar
27. 27.
Stronge, W.J.: Rigid body collisions with friction. Proc. Roy. Soc. Lond. A 431(1881), 169–181 (1990)
28. 28.
Brach, R.M.: Formulation of rigid body impact problems using generalized coefficient. Int. J. Eng. Sci. 36, 61–71 (1998)
29. 29.
Brogliato, B.: Nonsmooth Impact Mechanics: Models, Dynamics and Control, 2nd edn., pp. 157–159. Springer, London (1996)