Multibody System Dynamics

, Volume 18, Issue 4, pp 511–530 | Cite as

The analysis and simulation for three-dimensional impact with friction

  • Zhao Zhen
  • Caishan Liu


This paper presents a full discussion on how to formulate and evaluate the problem of spatial impact with friction in multibody systems. By considering that impact is experiencing a very short but finite time, we have established the differential equations of motion with normal impulse as a ‘time-like’ independent differential variable to describe the process of impact. A reliable numerical formulation, which can deal with the complex motions appearing in impact such as slip, stick and resumption of slip, has been developed by using difference schemes. The results indicate that the formulation and the numerical method presented in this paper can well solve the problems of 3D impact with friction by a comparison with the theoretical results existing in literature.


Numerical method 3D impact Friction Impulse Differential equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ivanov, A.P.: The problem of constrained impact. J. Appl. Math. Mech. 61(3), 341–353 (1997) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000) MATHCrossRefGoogle Scholar
  3. 3.
    Pheiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996) Google Scholar
  4. 4.
    Glocker, C., Studer, C.: Formulation and preparation for numerical evaluation of linear complementarity systems in dynamics. Multibody Syst. Dyn. 13, 447–463 (2005) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Yao, W., Chen, B., Liu, C.: Energetic coefficient of restitution for planar impact in multi-rigid-body systems with friction. Int. J. Impact Eng. 31, 255–265 (2005) CrossRefGoogle Scholar
  6. 6.
    Schiehlen, W., Seiferied, R.: Three approaches for elastodynamic contact in multibody systems. Multibody Syst. Dyn. 12, 1–16 (2004) MATHCrossRefGoogle Scholar
  7. 7.
    Hu, B., Eberhard, P., Schiehlen, W.: Comparison of analytical and experimental results for longitudinal impacts on elastic rods. J. Vib. Control 9, 157–174 (2003) MATHCrossRefGoogle Scholar
  8. 8.
    Seiferied, R., Schiehlen, W., Eberhard, P.: Numerical and experimental evaluation of coefficient of restitution for repeated impacts. Int. J. Impact Eng. 32, 508–524 (2005) CrossRefGoogle Scholar
  9. 9.
    Escalona, J.L., Sany, J.R., Shabana, A.A.: On the use of the restitution condition in flexible body dynamics. Nonlinear Dyn. 30, 71–86 (2002) MATHCrossRefGoogle Scholar
  10. 10.
    Seifried, R., Hu, B., Eberhard, P.: Numerical and experimental investigation of radial impacts on a half-circular plate. Multibody Syst. Dyn. 9, 265–281 (2003) MATHCrossRefGoogle Scholar
  11. 11.
    Yu, W., Matthew, T.M.: Two-dimensional rigid-body collisions with friction. Trans. ASME J. Appl. Mech. 59, 635–642 (1992) MATHGoogle Scholar
  12. 12.
    Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications. McGraw–Hill, New York (1985) Google Scholar
  13. 13.
    Keller, J.B.: Impact with friction. Trans. ASME J. Appl. Mech. 53, 1–4 (1986) MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Stronge, W.J.: Swerve during three-dimensional impact of rough rigid bodies. Trans. ASME J. Appl. Mech. 61, 605–611 (1994) MATHCrossRefGoogle Scholar
  15. 15.
    Chatterjee, A., Ruina, A.: Two interpretations of rigidity in rigid body collisions. Trans. ASME J. Appl. Mech. 65, 894–900 (1997) CrossRefGoogle Scholar
  16. 16.
    Smith, C.E.: Predicting rebounds using rigid-body dynamics. Trans. ASME J. Appl. Mech. 58, 754–758 (1991) CrossRefGoogle Scholar
  17. 17.
    Brach, R.M.: Impact coefficient and tangential impacts. Trans. ASME J. Appl. Mech. 64, 1014–1016 (1997) MATHCrossRefGoogle Scholar
  18. 18.
    Bhatt, V., Koechling, J.: Partitioning the parameter space according to different behaviors during three-dimensional. Trans. ASME J. Appl. Mech. 62, 740–746 (1995) MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Bhatt, V.: Three-dimensional frictional rigid-body impact. Trans. ASME J. Appl. Mech. 62, 893–898 (1995) MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Batlle, J.A.: Rough balanced collisions. Trans. ASME J. Appl. Mech. 63, 168–172 (1996) MATHCrossRefGoogle Scholar
  21. 21.
    Routh, E.J.: Dynamics of a System of Rigid Bodies. Macmillan, London (1897) Google Scholar
  22. 22.
    Kuninaka, H., Hayakawa, H.: Anomalous behavior of the coefficient of normal restitution in oblique impact. Phys. Rev. Lett. 93(15), 154301 (2004) CrossRefGoogle Scholar
  23. 23.
    Weir, W., Tallon, S.: The coefficient of restitution for normal incident, low velocity particle impacts. Chem. Eng. Sci. 60, 3637–3647 (2005) CrossRefGoogle Scholar
  24. 24.
    Louge, M.Y., Adams, M.E.: Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an elastoplastic plate. Phys. Rev. E 65, 021303 (2002) CrossRefGoogle Scholar
  25. 25.
    Wu, C.Y., Li, L.Y., Thornton, C.: Rebound behaviour of spheres for plastic impacts. Int. J. Impact Eng. 28, 929–946 (2003) CrossRefGoogle Scholar
  26. 26.
    Sondergaard, R., Chaney, K., Brennen, C.: Measurements of sloid sphere bouncing off flat plates. J. Appl. Mech. 57, 694–699 (1990) Google Scholar
  27. 27.
    Stronge, W.J.: Rigid body collisions with friction. Proc. Roy. Soc. Lond. A 431(1881), 169–181 (1990) MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Brach, R.M.: Formulation of rigid body impact problems using generalized coefficient. Int. J. Eng. Sci. 36, 61–71 (1998) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Brogliato, B.: Nonsmooth Impact Mechanics: Models, Dynamics and Control, 2nd edn., pp. 157–159. Springer, London (1996) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.State Key Lab for Turbulence & Complex Systems and Department of Mechanics and Aerospace, College of EngineeringPeking UniversityBeijingChina
  2. 2.Beijing Institute of Graphic CommunicationBeijingChina

Personalised recommendations