Multibody System Dynamics

, Volume 18, Issue 1, pp 35–58 | Cite as

Developments of multibody system dynamics: computer simulations and experiments

  • Wan-Suk Yoo
  • Kee-Nam Kim
  • Hyun-Woo Kim
  • Jeong-Hyun Sohn


It is an exceptional success when multibody dynamics researchers Multibody System Dynamics journal one of the most highly ranked journals in the last 10 years. In the inaugural issue, Professor Schiehlen wrote an interesting article explaining the roots and perspectives of multibody system dynamics. Professor Shabana also wrote an interesting article to review developments in flexible multibody dynamics. The application possibilities of multibody system dynamics have grown wider and deeper, with many application examples being introduced with multibody techniques in the past 10 years. In this paper, the development of multibody dynamics is briefly reviewed and several applications of multibody dynamics are described according to the author’s research results. Simulation examples are compared to physical experiments, which show reasonableness and accuracy of the multibody formulation applied to real problems. Computer simulations using the absolute nodal coordinate formulation (ANCF) were also compared to physical experiments; therefore, the validity of ANCF for large-displacement and large-deformation problems was shown. Physical experiments for large deformation problems include beam, plate, chain, and strip. Other research topics currently being carried out in the author’s laboratory are also briefly explained.


Multibody systems Computer simulations Physical experiments Absolute nodal coordinates Large deformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wittenburg, J.: Dynamics of Systems of Rigid Bodies. Teubner, Stuggart (1977) MATHGoogle Scholar
  2. 2.
    Chu, S.C., Pan, K.C.: Dynamic response of a high-speed slider-crank mechanism with elastic connecting rod. J. Eng. Ind. 97(1-2), 542–550 (1975) Google Scholar
  3. 3.
    Sutherland, G.H.: Analytical and experimental investigation of a high-speed elastic membered linkage. J. Eng. Ind. 98(3-4), 788–794 (1976) Google Scholar
  4. 4.
    Budynas, R., Poli, C.: Planar motion of a large flexible satellite. AIAA J. 9(10), 2099–2102 (1971) MATHGoogle Scholar
  5. 5.
    Hooker, W.W.: Equations of motion for interconnected rigid and elastic bodies: a derivation independent of angular momentum. Celest. Mech. II 11, 337–395 (1975) CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Rubin, S.: Improved component mode representation for structural dynamics. AIAA J. 13(8), 1007–1016 (1975) Google Scholar
  7. 7.
    Chang, C.J.: A general procedure for structure coupling dynamic analysis. PhD thesis, The University of Texas at Austin (1977) Google Scholar
  8. 8.
    Yoo, W.S., Haug, E.J.: Dynamics of flexible mechanical systems using vibration and static correction modes. ASME, J. Mech. Transm. Autom. Des. 108, 315–322 (1986) Google Scholar
  9. 9.
    Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1, 149–188 (1997) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1, 189–222 (1997) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Shabana, A.A., Wehage, R.A.: Coordinate reduction technique for transient analysis of special substructures with large angular rotations. J. Struct. Mech. 11(3), 401–431 (1983) Google Scholar
  12. 12.
    Rankin, C.C., Brogan, F.A.: An element independent corotational procedure for the treatment of large rotations. J. Pressure Vessel Technol. 108, 165–174 (1986) Google Scholar
  13. 13.
    Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem, part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985) MATHCrossRefGoogle Scholar
  14. 14.
    Simo, J.C., Vu-Quoc, L.: A three-dimensional finite strain rod model, part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986) MATHCrossRefGoogle Scholar
  15. 15.
    Shabana, A.A.: An absolute nodal coordinate formulation for the large rotation and large deformation analysis of flexible bodies. Technical Report No. MBS96-1-UIC, Department of of Mechanical Engineering, University of Illinois at Chicago, March 1996 Google Scholar
  16. 16.
    Haug, E.J.: Elements and methods of computational dynamics. In: Proceedings of NATO-NSF-ARO Advanced Study Institute on Computer Aided Analysis and Optimization of Mechanical System Dynamics, Iowa City, IA, pp. 3–38 (1983) Google Scholar
  17. 17.
    MSC software corporation: ADAMS/Car user’s guide (2003) Google Scholar
  18. 18.
    Kim, K.S., Yoo, W.S., Kim, S.-S., Kim, S.-S.: Vehicle dynamics program AutoDyn7(I)—structure and algorithm. Trans. KSAE 7(3), 321–330 (1999) (in Korean) MathSciNetGoogle Scholar
  19. 19.
    Han, J.G., Kim, D.H., Yoo, W.S., Kim, S.-S., Kim, S.-S.: Vehicle dynamics program AutoDyn7(II)—pre and post programs. Trans. KSAE 8(3), 190–197 (2000) (in Korean) Google Scholar
  20. 20.
    Sohn, J.H., Yoo, W.S., Kim, D.H.: Power train module in Vehicle dynamics program AutoDyn7. Trans. KSAE 9(2), 185–191 (2001) (in Korean) Google Scholar
  21. 21.
    Lim, S.H., Sohn, J.H., Kim, K.S., Yoo, W.S.: Contact module in vehicle dynamics program AutoDyn7. Trans. KSAE 9(6), 152–129 (2001) (in Korean) Google Scholar
  22. 22.
    Yoo, W.S., Sohn, J.H., Kim, K.S.: Development and applications of the AutoDyn7 program. In: Proceedings of the ACMD2002, Iwaki, Japan, 31 July–2 August 2002, pp. 316–323 Google Scholar
  23. 23.
    Jerkovsky, W.: The structure of multibody dynamics equations. J. Guid. Control 1(3), 173–182 (1978) MATHCrossRefGoogle Scholar
  24. 24.
    Kim, S.S., Vanderploeg, M.J.: A General and efficient method for dynamic analysis of mechanical systems using velocity transformations. J. Mech. Transm. Autom. De. 108, 176–182 (1986) CrossRefGoogle Scholar
  25. 25.
    Yoo, W.S., Kim, M.K., Lee, J.W., Kim, K.S., Shin, S.Y.: Estimation of maximum damping force and bending stress of suspension component using AutoDyn7 program. KSME Int. J. 13(3), 240–245 (1999) Google Scholar
  26. 26.
    Han, D.H., Sohn, J.H., Kim, K.S., Lee, J.N., Yoo, W.S., Lee, B.H., Choi, J.W.: Development and comparative study on tire models in the AutoDyn7 program. KSME Int. J. 14(7), 730–736 (2000) Google Scholar
  27. 27.
    Kim, K.N., Ok, J.K., Kim, M.S., Mun, W.K., Park, S.J., Yoo, W.S.: Calculation of brake onset velocity on dry asphalt pavement. Trans. KSME (2007, to appear) Google Scholar
  28. 28.
    Yoo, W.S., Kim, M.K., Kim, K.S.: Modified road profile generation using road profile wheel FRF and simulation of dynamic load transfer in vehicle suspension. SAE 1999-01-0937. SAE International’99, Detroit, USA (1999) Google Scholar
  29. 29.
    Sohn, J.H., Kim, K.S., Yoo, W.S., Lee, J.N.: Force element formulation of bushed massless link for numerical efficiency. Mech. Struct. Mach. 29(4), 279–299 (2001) CrossRefGoogle Scholar
  30. 30.
    Yoo, W.S., Baek, W.K., Sohn, J.H.: A practical model for bushing components for vehicle dynamic analysis. Int. J. Veh. Des. 36(4), 345–364 (2004) CrossRefGoogle Scholar
  31. 31.
    MADYMO V5.4, Database Manual, TNO (1999) Google Scholar
  32. 32.
    Yoo, W.S., Park, S.J., Park, D.W., Kim, M.S.: Comparison of ride comforts via experiment and computer simulation. Int. J. Automot. Technol. 7(3), 309–314 (2006) Google Scholar
  33. 33.
    Yoo, W.S., Park, D.W., Kim, M.S., Hong, K.S.: Optimum air pressure for an air-cell seat to enhance ride comfort. Int. J. Automot. Technol. 6(3), 251–258 (2005) Google Scholar
  34. 34.
  35. 35.
    Kwak, J.S., Park, S.J., Yoo, W.S., Park, J.W.: Effect of bent hole size in airbag on the occupant behavior. In: Proceedings of the ACMD2006, Tokyo, Japan, 1–4 August 2006 Google Scholar
  36. 36.
  37. 37.
  38. 38.
    Universal driving simulator for human, automobile and traffic research at komaba in Japan.
  39. 39.
    You, K.S., Lee, M.C., Kang, E., Yoo, W.S.: Development of a washout algorithm for a vehicle driving simulator using new tilt coordination and return mode. J. Mech. Sci. Technol. 19(1), 272–282 (2005) CrossRefGoogle Scholar
  40. 40.
    Park, J.Y., Yoo, W.S., Park, H.W.: Matching of flexible multibody dynamics simulation and experiment of a hydraulic excavator. In: Proceedings of ACMD2004, Olympic Parktel, Seoul, Korea, 1–4 August 2004, pp. 459–463 Google Scholar
  41. 41.
  42. 42.
    Noh, G.H., Yoo, W.S., Chung, B.S., Kang, D.W., Lyu, J.C.: Matching of multibody dynamic simulation and experiment of a drum-type washing machine. In: Proceedings of ACMD2006, A00662, Tokyo, Japan, 1–4 August 2006 Google Scholar
  43. 43.
    Litvin, F.L., Lain, Q., Kapelevich, A.L.: Asymmetric modified spur gear drives: reduction of noise, localization of contact, simulation of meshing and stress analysis. Comput. Methods Appl. Mech. Eng. 188, 363–390 (2000) MATHCrossRefGoogle Scholar
  44. 44.
    Park, S.J., and Yoo, W.S.: Deformation overlap in the design of spur and helical gear pair. Finite Elements Anal. Des. 40(11), 1361–1378 (2004) CrossRefGoogle Scholar
  45. 45.
    Park, S.J., Yoo, W.S., Cho, J.R.: Computer simulation and physical experiment for the contact pressure distribution on the tire. In: EuroMech Colloquium 476, Ferrol, Spain, 13–16 March 2006 Google Scholar
  46. 46.
    Yoo, W.S., Kim, M.S., Mun, S.H., Sohn, J.H.: Large displacement of beam with base motion: flexible multibody simulations and experiments. Comput. Methods Appl. Mech. Eng. 195, 7036–7051 (2006) CrossRefMATHGoogle Scholar
  47. 47.
    Yoo, W.S., Lee, J.H., Park, S.J., Sohn, J.H., Pogorelov, D., Dmitrochenko, O.: Large deflection analysis of a thin plate: computer simulations and experiments. Multibody Syst. Dyn. 11(2), 185–208 (2004) MATHCrossRefGoogle Scholar
  48. 48.
    Dmitrochenko, O., Yoo, W.S., Pogorelov, D.: Helicoseir as shape of a rotating chain (I): 2D theory and Simulation using ANCF. Multibody Syst. Dyn. 15, 135–158 (2006) MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Dmitrochenko, O., Yoo, W.S., Pogorelov, D.: Helicoseir as shape of a rotating chain (II): 3D theory and Simulation using ANCF. Multibody Syst. Dyn. 15, 181–200 (2006) MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Yoo, W.S., Park, S.J., Dmitrochenko, O., Pogorelov, D.: Verification of absolute nodal coordinate formulation in flexible multibody dynamics via physical experiments of large deformation problems. ASME, J. Comput. Nonlinear Dyn. 1(1), 81–93 (2006) CrossRefGoogle Scholar
  51. 51.
    Shin, S.H., Park, Y.B., Rhim, H.W., Yoo, W.S., Park, Y.J., Park, D.H.: Multibody dynamics in arterial system. J. Mech. Sci. Techol. 19(1), 343–349 (2005) Google Scholar
  52. 52.
    Stole, J., Benson, R.C.: Dynamic deflection of paper emerging from a channel. ASME J. Vib. Acoust. 114, 187–193 (1992) Google Scholar
  53. 53.
    Stack, K.D.: A study of friction feed paper separation. ASME, J. Eng. Ind. 115, 236–241 (1993) CrossRefGoogle Scholar
  54. 54.
    Cho, H.J., Bae, D.S., Choi, J.H., Lee, S.G., Rhim, S.S.: Simulation and experimental methods for media transport system, part I: three dimensional sheet modeling using relative coordinate. J. Mech. Sci. Technol. 19(1), 305–311 (2005) Google Scholar
  55. 55.
  56. 56.
    Lewis, C.H., Griffin, M.J.: Evaluating the vibration isolation of soft seat cushions using an active anthropodynamic dummy. J. Sound Vib. 253(5), 295–311 (2002) CrossRefGoogle Scholar
  57. 57.
    Ahn, S.J., Yoo, W.S.: Relationship between the subjective and physical magnitudes of shocks in a vehicle field trial. In: The 39th United Kingdom Group Meeting on Human Vibration, Ludlow, Shrospshire, UK, September 15–17 2004 Google Scholar
  58. 58.
    Kim, M.S., Moon, W.K., Noh, T.B., Nho, K.H., Yoo, W.S.: Objective testing of subjective rating in steering wheel vibration. In: Proceeding of KSAE Fall Meeting, Jinju (2006) (in Korean) Google Scholar
  59. 59.
    Noh, H.W., Yoo, W.S.: Global path planning and local path planning of an autonomous filed robot based on multibody dynamics. In: Ground Vehicle Seminar, ADD, Daejeon, Korea (2006) (in Korean) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Wan-Suk Yoo
    • 1
  • Kee-Nam Kim
    • 1
  • Hyun-Woo Kim
    • 1
  • Jeong-Hyun Sohn
    • 2
  1. 1.Professor, Department of Mechanical EngineeringPusan National UniversityBusanSouth Korea
  2. 2.Department of Mechanical System DesignPukyong National UniversityBusanSouth Korea

Personalised recommendations