Skip to main content
Log in

Nanoindentation creep behavior of RPV’s weld joint at room temperature

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

SA508 Gr.3 steel has been widely used in nuclear reactor pressure vessels (RPV). Nuclear components are generally combined through arc welding processes, which always produces heterogeneous mechanical properties in heat affected zone (HAZ) of weld joint. In order to study mechanical heterogeneity of weld joint, HAZ was been divided into five small regions (HAZ1 to HAZ5) based on the distance from the weld center line. The elastic modulus, hardness, and creep deformations of five regions in HAZ were measured through nanoindentation, as well as base and weld metals. According to the experimental results, the HAZ2 region (belonging to the fine-grained HAZ) exhibited a significantly lower hardness and creep behavior. Strain rate sensitivities (SRS) in different regions were then estimated from the steady-state creep, and the HAZ2 region showed a relatively higher value. The influence of grain boundary fraction on the creep behavior of weld joints was discussed later. Furthermore, the results of SRS also indicated that the creep mechanism of tested regions could be dominated by dislocation activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alkorta, J., Esnaola, J., Sevillano, J., et al.: Critical examination of strain-rate sensitivity measurement by nanoindentation methods: application to severely deformed niobium. Acta Mater. 56, 884–893 (2008)

    Article  Google Scholar 

  • Bower, A.F., Fleck, N.A., Needleman, A., et al.: Indentation of a power law creeping solid. Proc. R. Soc. Lond. (1993)

  • Cao, Z.H., Lu, H.M., Meng, X.K., et al.: Indentation size dependent plastic deformation of nanocrystalline and ultrafine grain Cu films at nanoscale. J. Appl. Phys. 105, 083521 (2009)

    Article  Google Scholar 

  • Chen, H., Song, Y.X., Zhang, T.H., et al.: Structure relaxation effect on hardness and shear transformation zone volume of a NiNb metallic glassy film. J. Non-Cryst. Solids 499, 257–263 (2018)

    Article  Google Scholar 

  • Choi, I., Yoo, B., Kim, Y., et al.: Indentation creep revisited. J. Mater. Res. 27(1), 3–11 (2012)

    Article  Google Scholar 

  • Choi, I.C., Kim, Y.J., Wang, Y.M., et al.: Nanoindentation behavior of nanotwinned Cu: influence of indenter angle on hardness, strain rate sensitivity and activation volume. Acta Mater. 61, 7313–7323 (2013)

    Article  Google Scholar 

  • Coble, R.L.: A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679 (1963)

    Article  Google Scholar 

  • Dimmler, G., Weinert, P., Cerjak, H.: Extrapolation of short-term creep rupture data—the potential risk of over-estimation. Int. J. Press. Vessels Piping 85, 55–62 (2008)

    Article  Google Scholar 

  • Elmustafa, A., Stoneb, D.: Nanoindentation and the indentation size effect: kinetics of deformation and strain gradient plasticity. J. Mech. Phys. Solids 51, 357–381 (2003)

    Article  Google Scholar 

  • Falat, L., Vyrostková, A., Homolová, V.: Creep deformation and failure of E911/E911 and P92/P92 similar weld-joints. Eng. Fail. Anal. 16, 2114–2120 (2009)

    Article  Google Scholar 

  • Fujiyama, K., Mori, K., Matsunaga, T., et al.: Creep-damage assessment of high chromium heat resistant steels and weldments. Mater. Sci. Eng. A 510–511, 195–201 (2009)

    Article  Google Scholar 

  • Guo, W., Dong, S., Guo, W., et al.: Microstructure and mechanical characteristics of a laser welded joint in SA508 nuclear pressure vessel steel. Mater. Sci. Eng. A 625, 65–80 (2015)

    Article  Google Scholar 

  • Hu, J., Zhang, W., Bi, G., et al.: Nanoindentation creep behavior of coarse-grained and ultrafine-grained pure magnesium and AZ31 alloy. Mater. Sci. Eng. A 698, 348–355 (2017)

    Article  Google Scholar 

  • Huang, P., Wang, F., Xua, M., et al.: Dependence of strain rate sensitivity upon deformed microstructures in nanocrystalline Cu. Acta Mater. 58(15), 5196–5205 (2010)

    Article  Google Scholar 

  • Jeyaganesh, B.: Overview of Welding Research Under the New Nuclear Manufacturing (NNUMAN) Programme (2014)

    Book  Google Scholar 

  • Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  • Laha, K., Chandravathi, K.S., Parameswaran, P., et al.: Type IV Cracking Susceptibility in Weld Joints of Different Grades of Cr-Mo Ferritic Steel, the Minerals. Metals & Materials Society and ASM International, New York (2008)

    Google Scholar 

  • Li, X., Bhushan, B.: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11–36 (2008)

    Article  Google Scholar 

  • Li, W.B., Henshall, J., Hooper, R., et al.: The mechanisms of indentation creep. Acta Metall. Mater. 39, 3099–3110 (1999)

    Article  Google Scholar 

  • Lu, H., Wang, B., Ma, J., Huang, G., et al.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189–207 (2003)

    Article  Google Scholar 

  • Lu, C., He, Y., Yang, J.G., et al.: An investigation of phase transition on the microstructural characteristic and creep behavior for the SA508 Gr. 3 steel used for nuclear reactor pressure vessels. Mater. Sci. Eng. A 711, 659–669 (2018)

    Article  Google Scholar 

  • Ma, Y., Peng, G.J., Wen, D.H., et al.: Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states. Mater. Sci. Eng. A 621, 111–117 (2015a)

    Article  Google Scholar 

  • Ma, Y., Feng, Y.H., Debela, T.T., et al.: Nanoindentation study on the creep characteristics of high-entropy alloy films: FCC versus BCC structures. Int. J. Refract. Met. Hard Mater. 54, 395–400 (2015b)

    Article  Google Scholar 

  • Ma, Y., Peng, G.J., Feng, Y.H., et al.: Nanoindentation investigation on the creep mechanism in metallic glassy films. Mater. Sci. Eng. A 651, 548–555 (2016)

    Article  Google Scholar 

  • Ma, Y., Peng, G.J., Feng, Y.H., et al.: Nanoindentation investigation on creep behavior of amorphous CuZrAl/ nanocrystalline Cu nanolaminates. J. Non-Cryst. Solids 465, 8–16 (2017)

    Article  Google Scholar 

  • Ma, Y., Song, Y., Huang, X., et al.: Testing effects on shear transformation zone size of metallic glassy films under nanoindentation. Micromachines 9, 636 (2018a)

    Article  Google Scholar 

  • Ma, Y., Peng, G.J., Chen, H., et al.: On the nanoindentation hardness of Cu–Zr–Al/Cu nanolaminates. J. Non-Cryst. Solids 482, 208–212 (2018b)

    Article  Google Scholar 

  • Murty, K.L., Miraglia, P.Q., Mathew, M.D., et al.: Characterization of gradients in mechanical properties of SA-533B steel welds using ball indentation. Int. J. Press. Vessels Piping 76, 361–369 (1999)

    Article  Google Scholar 

  • Oliver, W., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)

    Article  Google Scholar 

  • Somekawa, H., Mukai, T.: Nanoindentation creep behavior of grain boundary in pure magnesium. Philos. Mag. Lett. 90(12), 883–890 (2010)

    Article  Google Scholar 

  • Su, C., Herbert, E.G., Sohn, S., et al.: Measurement of power-law creep parameters by instrumented indentation methods. J. Mech. Phys. Solids 61(2), 517–536 (2013)

    Article  Google Scholar 

  • Verón, P., Hippsley, C.A., Knott, J.F.: Comparative studies of stress-relief cracking in relaxation test specimens and in a full-scale weldment. Int. J. Press. Vessels Piping 16, 29–51 (1984)

    Article  Google Scholar 

  • Wang, F., Huang, P., Xu, K.W.: Time dependent plasticity at real nanoscale deformation. Appl. Phys. Lett. 90(16), 2715 (2007)

    Google Scholar 

  • Wang, C.L., Lai, Y.H., Huang, J.C.: Creep of nanocrystalline nickel: a direct comparison between uniaxial and nanoindentation creep. Scr. Mater. 62, 175–178 (2010)

    Article  Google Scholar 

  • Watanabe, T., Masaaki, T., Masayoshi, Y., et al.: Creep damage evaluation of 9Cr–1Mo–V–Nb steel welded joints showing type IV fracture. Int. J. Press. Vessels Piping 83, 63–71 (2006)

    Article  Google Scholar 

  • Yang, J., Li, S.Y., Zhang, M.L., et al.: Welding process and welding consumable of generation III nuclear island main equipment. In: International Conference Pacific Basin Nuclear Conference. Springer, Singapore (2016)

    Google Scholar 

  • Zhang, X.P., Dorn, L.: Investigation on the possibility of using the microshear test as a surveillance method to estimate the mechanical properties and fracture toughness of nuclear pressure vessel steel, A508CL3, and its joints welded by narrow-gap submerged-arc welding. Int. J. Press. Vessels Piping 76, 35–41 (1999)

    Article  Google Scholar 

  • Zhang, T.H., Ye, J.H., Feng, Y.H., et al.: On the spherical nanoindentation creep of metallic glassy thin films at room temperature. Mater. Sci. Eng. A 685, 294–299 (2017)

    Article  Google Scholar 

  • Zheng, W., He, Y., Yang, J., et al.: Hydrogen diffusion mechanism of the single-pass welded joint in welding considering the phase transformation effects. J. Manuf. Process. 36, 126–137 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The research work was supported by the National 13th five-year Key Technologies R&D Program (No. 2016YFC0801902), National Natural Science Foundation of China (51575489 and 11502235) and Zhejiang Provincial Natural Science Foundation of China (LY18E010006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Huang, X., Gao, Z. et al. Nanoindentation creep behavior of RPV’s weld joint at room temperature. Mech Time-Depend Mater 24, 253–263 (2020). https://doi.org/10.1007/s11043-019-09419-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-019-09419-y

Keywords

Navigation