Nanoindentation creep behavior of RPV’s weld joint at room temperature

  • Yuxuan Song
  • Xianwei Huang
  • Zengliang Gao
  • Xiangqing Li
  • Yi MaEmail author


SA508 Gr.3 steel has been widely used in nuclear reactor pressure vessels (RPV). Nuclear components are generally combined through arc welding processes, which always produces heterogeneous mechanical properties in heat affected zone (HAZ) of weld joint. In order to study mechanical heterogeneity of weld joint, HAZ was been divided into five small regions (HAZ1 to HAZ5) based on the distance from the weld center line. The elastic modulus, hardness, and creep deformations of five regions in HAZ were measured through nanoindentation, as well as base and weld metals. According to the experimental results, the HAZ2 region (belonging to the fine-grained HAZ) exhibited a significantly lower hardness and creep behavior. Strain rate sensitivities (SRS) in different regions were then estimated from the steady-state creep, and the HAZ2 region showed a relatively higher value. The influence of grain boundary fraction on the creep behavior of weld joints was discussed later. Furthermore, the results of SRS also indicated that the creep mechanism of tested regions could be dominated by dislocation activities.


Weld joints Nanoindentation Creep Strain rate sensitivity 



The research work was supported by the National 13th five-year Key Technologies R&D Program (No. 2016YFC0801902), National Natural Science Foundation of China (51575489 and 11502235) and Zhejiang Provincial Natural Science Foundation of China (LY18E010006).


  1. Alkorta, J., Esnaola, J., Sevillano, J., et al.: Critical examination of strain-rate sensitivity measurement by nanoindentation methods: application to severely deformed niobium. Acta Mater. 56, 884–893 (2008) CrossRefGoogle Scholar
  2. Bower, A.F., Fleck, N.A., Needleman, A., et al.: Indentation of a power law creeping solid. Proc. R. Soc. Lond. (1993) Google Scholar
  3. Cao, Z.H., Lu, H.M., Meng, X.K., et al.: Indentation size dependent plastic deformation of nanocrystalline and ultrafine grain Cu films at nanoscale. J. Appl. Phys. 105, 083521 (2009) CrossRefGoogle Scholar
  4. Chen, H., Song, Y.X., Zhang, T.H., et al.: Structure relaxation effect on hardness and shear transformation zone volume of a NiNb metallic glassy film. J. Non-Cryst. Solids 499, 257–263 (2018) CrossRefGoogle Scholar
  5. Choi, I., Yoo, B., Kim, Y., et al.: Indentation creep revisited. J. Mater. Res. 27(1), 3–11 (2012) CrossRefGoogle Scholar
  6. Choi, I.C., Kim, Y.J., Wang, Y.M., et al.: Nanoindentation behavior of nanotwinned Cu: influence of indenter angle on hardness, strain rate sensitivity and activation volume. Acta Mater. 61, 7313–7323 (2013) CrossRefGoogle Scholar
  7. Coble, R.L.: A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679 (1963) CrossRefGoogle Scholar
  8. Dimmler, G., Weinert, P., Cerjak, H.: Extrapolation of short-term creep rupture data—the potential risk of over-estimation. Int. J. Press. Vessels Piping 85, 55–62 (2008) CrossRefGoogle Scholar
  9. Elmustafa, A., Stoneb, D.: Nanoindentation and the indentation size effect: kinetics of deformation and strain gradient plasticity. J. Mech. Phys. Solids 51, 357–381 (2003) CrossRefzbMATHGoogle Scholar
  10. Falat, L., Vyrostková, A., Homolová, V.: Creep deformation and failure of E911/E911 and P92/P92 similar weld-joints. Eng. Fail. Anal. 16, 2114–2120 (2009) CrossRefGoogle Scholar
  11. Fujiyama, K., Mori, K., Matsunaga, T., et al.: Creep-damage assessment of high chromium heat resistant steels and weldments. Mater. Sci. Eng. A 510–511, 195–201 (2009) CrossRefGoogle Scholar
  12. Guo, W., Dong, S., Guo, W., et al.: Microstructure and mechanical characteristics of a laser welded joint in SA508 nuclear pressure vessel steel. Mater. Sci. Eng. A 625, 65–80 (2015) CrossRefGoogle Scholar
  13. Hu, J., Zhang, W., Bi, G., et al.: Nanoindentation creep behavior of coarse-grained and ultrafine-grained pure magnesium and AZ31 alloy. Mater. Sci. Eng. A 698, 348–355 (2017) CrossRefGoogle Scholar
  14. Huang, P., Wang, F., Xua, M., et al.: Dependence of strain rate sensitivity upon deformed microstructures in nanocrystalline Cu. Acta Mater. 58(15), 5196–5205 (2010) CrossRefGoogle Scholar
  15. Jeyaganesh, B.: Overview of Welding Research Under the New Nuclear Manufacturing (NNUMAN) Programme (2014) CrossRefGoogle Scholar
  16. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987) Google Scholar
  17. Laha, K., Chandravathi, K.S., Parameswaran, P., et al.: Type IV Cracking Susceptibility in Weld Joints of Different Grades of Cr-Mo Ferritic Steel, the Minerals. Metals & Materials Society and ASM International, New York (2008) Google Scholar
  18. Li, X., Bhushan, B.: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11–36 (2008) CrossRefGoogle Scholar
  19. Li, W.B., Henshall, J., Hooper, R., et al.: The mechanisms of indentation creep. Acta Metall. Mater. 39, 3099–3110 (1999) CrossRefGoogle Scholar
  20. Lu, H., Wang, B., Ma, J., Huang, G., et al.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189–207 (2003) CrossRefGoogle Scholar
  21. Lu, C., He, Y., Yang, J.G., et al.: An investigation of phase transition on the microstructural characteristic and creep behavior for the SA508 Gr. 3 steel used for nuclear reactor pressure vessels. Mater. Sci. Eng. A 711, 659–669 (2018) CrossRefGoogle Scholar
  22. Ma, Y., Peng, G.J., Wen, D.H., et al.: Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states. Mater. Sci. Eng. A 621, 111–117 (2015a) CrossRefGoogle Scholar
  23. Ma, Y., Feng, Y.H., Debela, T.T., et al.: Nanoindentation study on the creep characteristics of high-entropy alloy films: FCC versus BCC structures. Int. J. Refract. Met. Hard Mater. 54, 395–400 (2015b) CrossRefGoogle Scholar
  24. Ma, Y., Peng, G.J., Feng, Y.H., et al.: Nanoindentation investigation on the creep mechanism in metallic glassy films. Mater. Sci. Eng. A 651, 548–555 (2016) CrossRefGoogle Scholar
  25. Ma, Y., Peng, G.J., Feng, Y.H., et al.: Nanoindentation investigation on creep behavior of amorphous CuZrAl/ nanocrystalline Cu nanolaminates. J. Non-Cryst. Solids 465, 8–16 (2017) CrossRefGoogle Scholar
  26. Ma, Y., Song, Y., Huang, X., et al.: Testing effects on shear transformation zone size of metallic glassy films under nanoindentation. Micromachines 9, 636 (2018a) CrossRefGoogle Scholar
  27. Ma, Y., Peng, G.J., Chen, H., et al.: On the nanoindentation hardness of Cu–Zr–Al/Cu nanolaminates. J. Non-Cryst. Solids 482, 208–212 (2018b) CrossRefGoogle Scholar
  28. Murty, K.L., Miraglia, P.Q., Mathew, M.D., et al.: Characterization of gradients in mechanical properties of SA-533B steel welds using ball indentation. Int. J. Press. Vessels Piping 76, 361–369 (1999) CrossRefGoogle Scholar
  29. Oliver, W., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992) CrossRefGoogle Scholar
  30. Somekawa, H., Mukai, T.: Nanoindentation creep behavior of grain boundary in pure magnesium. Philos. Mag. Lett. 90(12), 883–890 (2010) CrossRefGoogle Scholar
  31. Su, C., Herbert, E.G., Sohn, S., et al.: Measurement of power-law creep parameters by instrumented indentation methods. J. Mech. Phys. Solids 61(2), 517–536 (2013) CrossRefGoogle Scholar
  32. Verón, P., Hippsley, C.A., Knott, J.F.: Comparative studies of stress-relief cracking in relaxation test specimens and in a full-scale weldment. Int. J. Press. Vessels Piping 16, 29–51 (1984) CrossRefGoogle Scholar
  33. Wang, F., Huang, P., Xu, K.W.: Time dependent plasticity at real nanoscale deformation. Appl. Phys. Lett. 90(16), 2715 (2007) Google Scholar
  34. Wang, C.L., Lai, Y.H., Huang, J.C.: Creep of nanocrystalline nickel: a direct comparison between uniaxial and nanoindentation creep. Scr. Mater. 62, 175–178 (2010) CrossRefGoogle Scholar
  35. Watanabe, T., Masaaki, T., Masayoshi, Y., et al.: Creep damage evaluation of 9Cr–1Mo–V–Nb steel welded joints showing type IV fracture. Int. J. Press. Vessels Piping 83, 63–71 (2006) CrossRefGoogle Scholar
  36. Yang, J., Li, S.Y., Zhang, M.L., et al.: Welding process and welding consumable of generation III nuclear island main equipment. In: International Conference Pacific Basin Nuclear Conference. Springer, Singapore (2016) Google Scholar
  37. Zhang, X.P., Dorn, L.: Investigation on the possibility of using the microshear test as a surveillance method to estimate the mechanical properties and fracture toughness of nuclear pressure vessel steel, A508CL3, and its joints welded by narrow-gap submerged-arc welding. Int. J. Press. Vessels Piping 76, 35–41 (1999) CrossRefGoogle Scholar
  38. Zhang, T.H., Ye, J.H., Feng, Y.H., et al.: On the spherical nanoindentation creep of metallic glassy thin films at room temperature. Mater. Sci. Eng. A 685, 294–299 (2017) CrossRefGoogle Scholar
  39. Zheng, W., He, Y., Yang, J., et al.: Hydrogen diffusion mechanism of the single-pass welded joint in welding considering the phase transformation effects. J. Manuf. Process. 36, 126–137 (2018) CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yuxuan Song
    • 1
  • Xianwei Huang
    • 1
  • Zengliang Gao
    • 1
    • 2
  • Xiangqing Li
    • 3
  • Yi Ma
    • 1
    Email author
  1. 1.College of Mechanical EngineeringZhejiang University of TechnologyHangzhouChina
  2. 2.Engineering Research Center of Process Equipment and Re-manufacturingMinistry of EducationHangzhouChina
  3. 3.School of EngineeringWestlake UniversityHangzhouChina

Personalised recommendations