Skip to main content
Log in

Fractional time-dependent apparent viscosity model for semisolid foodstuffs

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The difficulty in the description of thixotropic behaviors in semisolid foodstuffs is the time dependent nature of apparent viscosity under constant shear rate. In this study, we propose a novel theoretical model via fractional derivative to address the high demand by industries. The present model adopts the critical parameter of fractional derivative order \(\alpha\) to describe the corresponding time-dependent thixotropic behavior. More interestingly, the parameter \(\alpha\) provides a quantitative insight into discriminating foodstuffs. With the re-exploration of three groups of experimental data (tehineh, balangu, and natillas), the proposed methodology is validated in good applicability and efficiency. The results show that the present fractional apparent viscosity model performs successfully for tested foodstuffs in the shear rate range of \(50\mbox{--}150~\mbox{s}^{ - 1}\). The fractional order \(\alpha\) decreases with the increase of temperature at low temperature, below 50 °C, but increases with growing shear rate. While the ideal initial viscosity \(k\) decreases with the increase of temperature, shear rate, and ingredient content. It is observed that the magnitude of \(\alpha\) is capable of characterizing the thixotropy of semisolid foodstuffs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu-Jdayil, B.: Modelling the time-dependent rheological behavior of semisolid foodstuffs. J. Food Eng. 57(1), 97–102 (2003)

    Article  Google Scholar 

  • Cheng, C.H.: A differential form of constitutive relation for thixotropy. Rheol. Acta 12(2), 228–233 (1973)

    Article  Google Scholar 

  • Cheng, C., Nguyen, Q.D., Rønningsen, H.P.: Isothermal start-up of pipeline transporting waxy crude oil. J. Non-Newton. Fluid 87(2–3), 127–154 (1999)

    Article  Google Scholar 

  • Coussot, P., Gaulard, F.: Gravity flow instability of viscoplastic materials: the ketchup drip. Phys. Rev. E 72(3), 031409 (2005)

    Article  Google Scholar 

  • Du, M., Wang, Z., Hu, H.: Measuring memory with the order of fractional derivative. Sci. Rep. 3(7478), 3431 (2013)

    Article  Google Scholar 

  • El-Shahed, M.: MHD of a fractional viscoelastic fluid in a circular tube. Mech. Res. Commun. 33(2), 261–268 (2006)

    Article  MathSciNet  Google Scholar 

  • Falguera, V., Ibarz, A.: A new model to describe flow behaviour of concentrated orange juice. Food Biophys. 5(2), 114–119 (2010)

    Article  Google Scholar 

  • Fan, W., Jiang, X., Qi, H.: Parameter estimation for the generalized fractional element network Zener model based on the Bayesian method. Physica A 427, 40–49 (2015)

    Article  MathSciNet  Google Scholar 

  • Fischer, P., Pollard, M., Erni, P., Marti, I., Padar, S.: Rheological approaches to food systems. C. R. Phys. 10(8), 740–750 (2009)

    Article  Google Scholar 

  • Jin, B., Yuan, J., Wang, K., Sang, X., Yan, B., Wu, Q., Li, F., Zhou, X., Zhou, G., Yu, C.: A comprehensive theoretical model for on-chip microring-based photonic fractional differentiators. Sci. Rep. 5, 14216 (2015)

    Article  Google Scholar 

  • Kretser, R.G.D., Boger, D.V.: A structural model for the time-dependent recovery of mineral suspensions. Rheol. Acta 40(6), 582–590 (2001)

    Article  Google Scholar 

  • Liang, T.X., Sun, W.Z., Wang, L.D., Wang, Y.H.: Effect of surface energies on screen printing resolution. IEEE Trans. Compon. Packaging B 19(2), 423–426 (1996)

    Article  Google Scholar 

  • Mahmood, A., Parveen, S., Ara, A., Khan, N.A.: Exact analytic solutions for the unsteady flow of a non-Newtonian fluid between two cylinders with fractional derivative model. Commun. Nonlinear Sci. 14(8), 3309–3319 (2009)

    Article  Google Scholar 

  • Mcnaught, A.D., Wilkinson, A.: Compendium of Chemical Terminology, vol. 1669. Blackwell Science, Oxford (1997)

    Google Scholar 

  • Mewis, J., Wagner, N.J.: Thixotropy. Adv. Colloid Interface 147, 214–227 (2009)

    Article  Google Scholar 

  • Namazi, H., Kulish, V.V., Wong, A.: Mathematical Modelling and Prediction of the Effect of Chemotherapy on Cancer Cells. Sci. Rep-UK 5 (2015)

  • Nguyen, Q.D., Jensen, C.T.B., Kristensen, P.G.: Experimental and modelling studies of the flow properties of maize and waxy maize starch pastes. Chem. Eng. J. 70(2), 165–171 (1998)

    Article  Google Scholar 

  • Nils, L.B., Higgs, M.H., Spain, W.J., Fairhall, A.L.: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11(11), 1335 (2008)

    Article  Google Scholar 

  • Petrellis, N., Flumerfelt, R.: Rheological behavior of shear degradable oils: kinetic and equilibrium properties. Can. J. Chem. Eng. 51(3), 291–301 (1973)

    Article  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations, vol. 198. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  • Raber, E., Mcguire, R.: Oxidative decontamination of chemical and biological warfare agents using L-Gel. J. Hazard. Mater. 93(3), 339–352 (2002)

    Article  Google Scholar 

  • Rao, A.: Rheology of Fluid and Semisolid Foods: Principles and Applications. Springer, Media (2010)

    Google Scholar 

  • Razavi, S.M.A., Karazhiyan, H.: Flow properties and thixotropy of selected hydrocolloids: experimental and modeling studies. Food Hydrocoll. 23(3), 908–912 (2009)

    Article  Google Scholar 

  • Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63(1), 010801 (2010)

    Article  Google Scholar 

  • Shah, S.H.A.M., Qi, H.: Starting solutions for a viscoelastic fluid with fractional Burgers’ model in an annular pipe. Nonlinear Anal., Real World Appl. 11(1), 547–554 (2010)

    Article  MathSciNet  Google Scholar 

  • Stiassnie, M.: On the application of fractional calculus for the formulation of viscoelastic models. Appl. Math. Model. 3(4), 300–302 (1979)

    Article  Google Scholar 

  • Sun, H.G., Chen, W., Chen, Y.Q.: Variable-order fractional differential operators in anomalous diffusion modeling. Physica A 388(21), 4586–4592 (2009)

    Article  Google Scholar 

  • Tarrega, A., Duran, L., Costell, E.: Flow behaviour of semi-solid dairy desserts. Effect of temperature. Int. Dairy J. 14(4), 345–353 (2004)

    Article  Google Scholar 

  • Yang, X., Chen, W., Xiao, R., Ling, L.: A fractional model for time-variant non-Newtonian flow. Therm. Sci. 21(1A), 61–68 (2017)

    Article  Google Scholar 

  • Yin, D., Zhang, W., Cheng, C., Li, Y.: Fractional time-dependent Bingham model for muddy clay. J. Non-Newton. Fluid 187, 32–35 (2012)

    Article  Google Scholar 

  • Yin, D., Wu, H., Cheng, C., Chen, Y.Q.: Fractional order constitutive model of geomaterials under the condition of triaxial test. Int. J. Numer. Anal. Methods 37(8), 961–972 (2013)

    Article  Google Scholar 

  • Yu, B., Jiang, X., Xu, H.: A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation. Numer. Algorithms 68(4), 923–950 (2015)

    Article  MathSciNet  Google Scholar 

  • Yuan, N., Fu, Z., Liu, S.: Extracting climate memory using fractional integrated statistical model: a new perspective on climate prediction. Sci. Rep. 4, 6577 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Wenxiang Xu for valuable discussions and suggestions. This paper was supported by the National Natural Science Foundation of China (11572111, 11572112, and 11528205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Chen, W. & Sun, H. Fractional time-dependent apparent viscosity model for semisolid foodstuffs. Mech Time-Depend Mater 22, 447–456 (2018). https://doi.org/10.1007/s11043-017-9366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-017-9366-8

Keywords

Navigation