Mechanics of Time-Dependent Materials

, Volume 19, Issue 3, pp 243–262 | Cite as

Prestrain-dependent viscosity of a highly filled elastomer: experiments and modeling



Highly filled elastomers exhibit a complex microstructure made up of rigid fillers bounded by a thin layer polymeric matrix. The interactions between the fillers and the binder amplify locally the applied strains and induce a nonlinear viscoelastic behavior. The aim here is to analyze the influence of prestrain on the viscoelastic behavior. This paper proposes a prestrain-dependent viscoelastic constitutive model. The model is a superposition of three relaxation spectra, each corresponding to a family of polymer chains, and can be regarded in either its continuous or discrete expression. More specifically, one of these relaxation spectra is modified to assure the prestrain sensitivity. The parameters of the discrete model are identified from relaxation and DMA experiments performed on a solid propellant, and the obtained predictions match closely the experiments. The novelty of the analysis proposed in this paper is threefold. On the one hand, we report a new series of experimental measures, performed for a large range of frequencies for the DMA experiment and relaxation times for the relaxation experiment, and, on the other hand, we propose a constitutive law compatible with the principles of thermodynamics, which predicts closely the measurements. Finally, the analysis is performed comparing both relaxation and DMA experiments using the spectrum of relaxation times. A peculiarity of the present discussion is the novel identification method used, which identifies directly the relaxation times. This technique leads to models with smaller and optimum numbers of parameters than classical methods based on a logarithmic distribution of relaxation times.


Prestrain Time spectrum of relaxation Nonlinear viscoelasticity Constitutive behavior 



The authors would like to thank the Direction Générale de l’Armement, especially Laurent Munier (DGA), and HERAKLES-SAFRAN for financial support for this study.


  1. Amin, A., Lion, A., Sekita, S., Okui, Y.: Nonlinear dependence of viscosity in modeling the rate-dependent response of natural and high damping rubbers in compression and shear: Experimental identification and numerical verification. Int. J. Plast. 22, 1610–1657 (2006) CrossRefMATHGoogle Scholar
  2. Arruda, E., Boyce, M.: A three-dimensional model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993) CrossRefGoogle Scholar
  3. Azoug, A.: Micromécanismes et comportement macroscopique d’un élastomère fortement chargement. Ph.D. Thesis, Ecole Polytechnique (2010) Google Scholar
  4. Azoug, A., Constantinescu, A., Pradeilles-Duval, R., Vallat, M.F., Neviere, R., Haidar, B.: Effect of the sol fraction and hydrostatic deformation on the viscoelastic behavior of pre-strained highly filled elastomers. J. Appl. Polym. Sci. 127, 1772–1780 (2013a) CrossRefGoogle Scholar
  5. Azoug, A., Thorin, A., Neviere, R., Pradeilles-Duval, R., Constantinescu, A.: Influence of orthogonal pre-strain on the viscoelastic behaviour of highly-filled elastomers. Polym. Test. 32, 375–384 (2013b) CrossRefGoogle Scholar
  6. Azoug, A., Constantinescu, A., Paridelles Duval, R.M., Neviere, R.: Influence of cross-linking and plasticizing on the viscoelasticity of highly-filled elastomers. J. Appl. Polym. Sci. 131, 201–215 (2014a) Google Scholar
  7. Azoug, A., Constantinescu, A., Paridelles Duval, R.M., Neviere, R.: Influence of fillers and bonding agents on the viscoelasticity of highly-filled elastomers. J. Appl. Polym. Sci. 131, 321–325 (2014b) Google Scholar
  8. Azoug, A., Constantinescu, A., Neviere, R.: Molecular origin of the influence of the temperature on the loss factor of a solid propellant. Propellants, Explosives, Pyrothecnics (2014c, accepted) Google Scholar
  9. Azoug, A., Constantinescu, A., Neviere, R., Jacob, G.: Microstructure and deformation mechanisms of a solid propellant using 1H NMR spectroscopy. Fuel 147, 1–9 (2015) CrossRefGoogle Scholar
  10. Baumgaertel, M., Winter, H.: Interrelation between continuous and discrete relaxation time spectra. J. Non-Newton. Fluid Mech. 44, 15–36 (1992) CrossRefGoogle Scholar
  11. Botelho, E., Figiel, L., Rezende, M., Lauke, B.: Mechanical behavior of carbon fiber reinforced polyamide composites. Compos. Sci. Technol. 63, 1843–1855 (2003) CrossRefGoogle Scholar
  12. Brinson, H.: Polymer Engineering Science and Viscoelasticity. An Introduction. Springer, Berlin (2008) CrossRefGoogle Scholar
  13. Christensen, R.: A nonlinear theory of viscoelasticity for application to elastomers. J. Appl. Mech. 47, 762–768 (1980) CrossRefMATHGoogle Scholar
  14. Coleman, B., Gurtin, M.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613 (1967) CrossRefGoogle Scholar
  15. Doi, M.: Molecular theory of the viscoelastic properties of concentrated polymer solutions. Chem. Phys. Lett. 26, 269–275 (1974) CrossRefGoogle Scholar
  16. Findley, W., Lai, J., Onaran, K.: Creep and Relaxation of Nonlinear Viscoelastic Materials. Dover, New York (1976) MATHGoogle Scholar
  17. Halphen, B., Nguyen, Q.: Sur les matériaux standards généralisés. J. Méc. 14, 39–63 (1975) MATHGoogle Scholar
  18. Holzapfel, G.A.: Non Linear Solid Mechanics: A Continuum Approach for Engineering. Wiley, New York (2006) Google Scholar
  19. Huber, N., Tsakmakis, C.: Finite deformation viscoelasticity laws. Mech. Mater. 32, 1–18 (2000) CrossRefGoogle Scholar
  20. Jalocha, D., Constantinescu, A., Neviere, R.: Revisiting the identification of generalized maxwell models from experimental results. Int. J. Solids Struct. (2015a, submitted) Google Scholar
  21. Jalocha, D., Constantinescu, A., Neviere, R.: Prestrained biaxial DMA investigation of viscoelastic nonlinearities in highly filled elastomers. Polym. Test. 42, 37–44 (2015b) CrossRefGoogle Scholar
  22. Knauss, W., Emri, L., Lu, H.: Handbook of Experimental Solid Mechanics. Springer, Berlin (2006) Google Scholar
  23. Kurtz, D., Kurweil, J., Swartz, C.: Theory of Integration. World Scientific, Singapore (2004) CrossRefGoogle Scholar
  24. LeTallec, P., Rahier, C.: Numerical models of steady rolling for non linear viscoelastic structures in finite deformations. Int. J. Numer. Methods Eng. 37, 1159–1186 (1994) CrossRefGoogle Scholar
  25. Lion, A., Kardelky, C.: The Payne effect in finite viscoelasticity: Constitutive modelling based on fractional derivatives and intrinsic time scales. Int. J. Plast. 20, 1313–1345 (2004) CrossRefMATHGoogle Scholar
  26. Litvinov, V., Steeman, P.: EPDM-carbon black interactions and the reinforcement mechanisms, as studied by low-resolution 1H NMR. Macromolecules 32, 8476–8490 (1999) CrossRefGoogle Scholar
  27. Lopez-Pamies, O.: A new I1-based hyperelastic model for rubber elastic materials. C. R., Méc. 338, 3–11 (2010) CrossRefMATHGoogle Scholar
  28. Markovitz, H.: Boltzmann and the beginnings of rheology. Trans. Soc. Rheol. 21(3), 381–398 (1977) MathSciNetCrossRefMATHGoogle Scholar
  29. Mathematica,
  30. Mowery, D., Assink, R., Celina, M.: Sensitivity of proton NMR relaxation times in a HTPB based polyurethane elastomer to thermo-oxidative aging. Polymer 46, 10919–10924 (2005) CrossRefGoogle Scholar
  31. Mullins, L.: Softening of rubber by deformation. Rubber Chem. Technol. 42(1), 339–362 (1969) CrossRefGoogle Scholar
  32. Ozupek, S.: Constitutive Modeling of Hight Elongation Solid Propellants. Ph.D. Thesis, University of Texas (1989) Google Scholar
  33. Ozupek, S., Becker, E.: Constitutive modeling of high-elongation solid propellants. J. Eng. Mater. Technol.-Trans. ASME 114, 111–115 (1992) CrossRefGoogle Scholar
  34. Payne, A.: The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J. Appl. Polym. Sci. 6, 53–57 (1962) Google Scholar
  35. Roeder, C., Stanton, J.: Elastomeric bearing: State of the art. J. Struct. Eng. 109, 2853–2871 (1983) CrossRefGoogle Scholar
  36. Simhambhatla, M., Leonov, A.: On the rheological modeling of filled polymers with particle matrix interactions. Rheol. Acta 34, 329–338 (1995) CrossRefGoogle Scholar
  37. Simo, J.: On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153–173 (1987) MathSciNetCrossRefMATHGoogle Scholar
  38. Simo, J., Hughes, T.J.R.: Computational Inelasticity. Interdisciplinary Applied Mathematics (1998) MATHGoogle Scholar
  39. Smith, T.: Empirical equations for representing viscoelastic functions and for deriving spectra. J. Polym. Sci. 35, 39–50 (1971) Google Scholar
  40. Steinmann, P., Hossain, M., Possart, G.: Hyperelastic models for rubber-like materials: Consistent tangent operators and suitability for Treloar’s data. Arch. Appl. Mech. 82, 1183–1217 (2012) CrossRefMATHGoogle Scholar
  41. Swanson, S., Christensent, L.: A constitutive formulation for high elongation propellants. J. Spacecr. 20, 559–566 (1983) CrossRefGoogle Scholar
  42. Thorin, A., Azoug, A., Constantinescu, A.: Influence of prestrain on mechanical properties of highly-filled elastomers: Measurements and modeling. Polym. Test. 31, 978–986 (2012) CrossRefGoogle Scholar
  43. Widder, D.: The Laplace Transform. Princeton University Press, Princeton (1946) Google Scholar
  44. Williams, M., Landel, R., Ferry, J.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955) CrossRefGoogle Scholar
  45. Xu, F., Aravas, N., Sofronis, P.: Constitutive modeling of solid propellant materials with evolving microstructural damage. J. Mech. Phys. Solids 56, 2050–2073 (2008) CrossRefMATHGoogle Scholar
  46. Zimm, B., Lumpkin, O.: Reptation of a polymer chain in an irregular matrix: Diffusion and electrophoresis. Macromolecules 26, 226–234 (1993) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Laboratoire de Mecanique des Solides, CNRS UMR 7649, Ecole PolytechniqueParisTechPalaiseau CedexFrance
  2. 2.HeraklesCentre de Recherche du BouchetVert Le PetitFrance

Personalised recommendations