Skip to main content
Log in

Elevated temperature creep of pearlitic steels: an experimental–numerical approach

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Pearlitic steels are well known for their high strength and hardness. This makes them the natural choice for applications in which structural integrity and minimum irreversible deformation over time are required. Although their room-temperature mechanical response has been intensively studied in the past, little information can be found in the literature regarding the effect of temperature on the mechanical response of pearlitic steels. In this paper, an experimental–numerical approach is used to study the mechanical response of pearlitic steels in the temperature range 20–500 °C. A finite-strain thermo-viscoplastic model is presented together with a set of elevated temperature tests (tensile and creep tests). The aim of the tests is twofold: first, to provide insight into the elevated-temperature mechanical response of the material; and second, to provide the data required to identify the corresponding material parameters. Furthermore, the model and the experimental data are instrumental in showing that the influence of temperature on the mechanical behavior of pearlitic steels becomes significant for temperatures above 350–400 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allain, S., Bouaziz, O.: Microstructure based modeling for the mechanical behavior of ferrite–pearlite steels suitable to capture isotropic and kinematic hardening. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 496(1), 329–336 (2008)

    Article  Google Scholar 

  • Atienza, J., Elices, M.: Behavior of prestressing steels after a simulated fire: fire-induced damages. Constr. Build. Mater. 23(8), 2932–2940 (2009)

    Article  Google Scholar 

  • Chaboche, J.: A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24, 1642–1693 (2008)

    Article  MATH  Google Scholar 

  • Chuzhoy, L., DeVor, R., Kapoor, S., Bamman, D.: Microstructure-level modelling of ductile iron machining. J. Manuf. Sci. Eng. 124, 162–169 (2002)

    Article  Google Scholar 

  • Cooke, G.: An introduction to the mechanical properties of structural steel at elevated temperatures. Fire Saf. J. 13(1), 45–54 (1988)

    Article  Google Scholar 

  • de Souza Neto, E., Peric, D., Owen, D.: Computational Methods for Plasticity: Theory and Applications. Wiley, New York (2008)

    Book  Google Scholar 

  • Dieter, G.: Mechanical Metallurgy. McGraw-Hill Education, Maidenhead (1989)

    Google Scholar 

  • Dollar, M., Bernstein, I., Thompson, A.: Influence of deformation substructure on flow and fracture of fully pearlitic steel. Acta Metall. 36(2), 311–320 (1988)

    Article  Google Scholar 

  • Freed, A., Walker, K.: Viscoplasticity with creep and plasticity bounds. Int. J. Plast. 9, 213–242 (1993)

    Article  MATH  Google Scholar 

  • Garofalo, F.: An empirical relation defining the stress dependence of minimum creep rate in metals. Trans. Metall. Soc. AIME 227(2), 351–355 (1963)

    Google Scholar 

  • Garofalo, E., Malenock, P., Smith, G.: The influence of temperature on the elastic constants of some commercial steels. In: Determination of Elastic Constants. ASTM Spec. Tech. Publ., p. 10 (1952)

    Chapter  Google Scholar 

  • Gonzalez, B., Marchi, L., da Fonseca, E.J., Modenesi P., Buono, V.: Measurement of dynamic strain aging in pearlitic steels by tensile test. ISIJ Int. 43(3), 428–432 (2003)

    Article  Google Scholar 

  • Gundlach, R.: Thermal fatigue resistance of alloyed gray irons for diesel engine components. Trans. Am. Foundrym. Soc. 87, 551–560 (1980)

    Google Scholar 

  • Hartmann, S.: Comparison of the Multiplicative Decompositions F=F θ F M and F=F M F θ in Finite Strain Thermo-Elasticity pp. 1–13 (2012). Fakultät für Mathematik/Informatik und Maschinenbau, Technische Universität Clausthal, Fac3-12-02

    Google Scholar 

  • Haupt, P.: Continuum Mechanics and Theory of Materials. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  • Holzapfel, G.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, New York (2000)

    Google Scholar 

  • Hono, K., Ohnuma, M., Murayama, M., Nishida, S., Yoshie, A., Takahashi, T.: Cementite decomposition in heavily drawn pearlite steel wire. Scr. Mater. 44(6), 977–984 (2001)

    Article  Google Scholar 

  • Inoue, A., Ogura, T., Masumoto, T.: Microstructures of deformation and fracture of cementite in pearlitic carbon steels strained at various temperatures. Metall. Trans. A, Phys. Metall. Mater. Sci. 8(11), 1689–1695 (1977)

    Article  Google Scholar 

  • Krauss, G.: Steels: Processing, Structure, and Performance. ASM International, Materials Park (2005)

    Google Scholar 

  • Langford, G.: Deformation of pearlite. Metall. Mater. Trans. A, Phys. Metall. Mater. Sci. 8(6), 861–875 (1977)

    Article  Google Scholar 

  • Lion, A.: Constitutive modelling in finite thermo-viscoplasticity: a physical approach based on nonlinear rheological models. Int. J. Plast. 16(5), 469–494 (2000)

    Article  MATH  Google Scholar 

  • Ljustina, G., Fagerström, M., Larsson, R.: Hypo- and hyper-inelasticity applied to modeling of compacted graphite iron machining simulations. Eur. J. Mech. A, Solids 37, 57–68 (2013)

    Article  MathSciNet  Google Scholar 

  • Lubarda, V.: Constitutive theories based on the multiplicative decomposition of deformation gradient: termoelasticity, elastoplasticity and biomechanics. Appl. Mech. Rev. 57(2), 95–108 (2004)

    Article  Google Scholar 

  • Matweb: Aisi 1070 steel, hot rolled, 19–32 mm (0.75–1.25 in) round (2014). www.matweb.com, accessed January 2014

  • Miller, A.: An inelastic constitutive model for monotonic, cyclic, and creep deformation: part I—equations development and analytical procedures. J. Eng. Mater. Technol. 98, 97–105 (1976)

    Article  Google Scholar 

  • Mohammed, W.M., Ng, E., Elbestawi, M.: On stress propagation and fracture in compacted graphite iron. Int. J. Adv. Manuf. Technol. 56(1), 233–244 (2011)

    Article  Google Scholar 

  • Perzyna, P.: Thermodynamic theory of viscoplasticity. Adv. Appl. Mech. 11, 313–354 (1971)

    Article  Google Scholar 

  • Porter, D., Easterling, K., Smith, G.: Dynamic studies of the tensile deformation and fracture of pearlite. Acta Metall. 26(9), 1405–1422 (1978)

    Article  Google Scholar 

  • Syn, C., Leuser, D., Sherby, O., Taleff, E.: Stress–strain rate relations in ultra high carbon steels deformed in the ferrite range of temperature. Materials Science Forum, 426–432, 853–858 (2003)

  • Takahashi, T., Nagumo, M.: Flow stress and work-hardening of pearlitic steel. Mater. Trans., JIM 11(2), 113–119 (1970)

    Google Scholar 

  • Tsuzaki, K., Matsuzaki, Y., Maki, T., Tamura, I.: Fatigue deformation accompanying dynamic strain aging in a pearlitic eutectoid steel. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 142(1), 63–70 (1991)

    Article  Google Scholar 

  • Ubachs, R., Schreurs, P., Geers, M.: Phase field dependent viscoplastic behaviour of solder alloys. Int. J. Solids Struct. 42, 2533–2558 (2005)

    Article  MATH  Google Scholar 

  • Wu, M., Campbell, J.: Thermal fatigue in diesel engine cylinder head castings. In: One Hundred Second Annual Meeting of the American Foundrymen’s Society, pp. 485–495 (1998)

    Google Scholar 

  • Zener, C., Hollomon, J.: Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 15(1), 22–32 (1944a)

    Article  Google Scholar 

  • Zener, C., Hollomon, J.: Plastic flow and rupture of metals. Trans. Am. Soc. Mech. Eng. 33, 163–235 (1944b)

    Google Scholar 

Download references

Acknowledgements

This research was carried out under the project number MC2.06270 in the framework of the Research Program of the Materials innovation institute (M2i) (www.m2i.nl). The authors would also like to thank Hans Hofman, Ton Riemslag, and Michael Janssen from the Materials Science and Engineering Department of Delft University of Technology for providing the facilities and the required assistance to perform the elevated temperature tests on pearlitic steels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kouznetsova.

Appendices

Appendix A: Tensor and vector operation notation

In this paper, Cartesian tensors and associated tensor products are used, using a Cartesian vector basis e 1, e 2, e 3. The Einstein summation rule for repeated indices is used. Adopted notations are summarized below:

  • Quantities:

    • Scalars: α,a,A,

    • Vectors: a=a i e i ,

    • Second-order tensors: A=A ij e i e j ,

    • Second-order identity tensor: I=δ ij e i e j ,

    • Fourth-order tensors: \({^{4}\mathbb{A} = A_{ijkl}\mathbf{e}_{i} \otimes\mathbf{e}_{j} \otimes\mathbf{e}_{k} \otimes\mathbf{e}_{l}}\),

    • Fourth-order identity tensor: \({^{4}\mathbb{I} = \delta_{il}\delta _{jk}\mathbf{e}_{i} \otimes\mathbf{e}_{j} \otimes\mathbf{e}_{k} \otimes\mathbf{e}_{l}}\),

    • Right transposed of the fourth-order identity tensor: \({^{4}\mathbb{I}^{RT} = \delta_{ik}\delta_{jl}\mathbf{e}_{i} \otimes\mathbf{e}_{j} \otimes\mathbf{e}_{k} \otimes\mathbf{e}_{l}}\).

  • Operations:

    • Scalar multiplication: c=ab,c=a b,C=a B,

    • Dyadic product: C=ab=a i b j e i e j ,

    • Inner product: c=ab=a i b j ,C=AB=A ij B jk e i e k ,

    • Double inner product: \(c = \boldsymbol{{A}} : \boldsymbol{ {B}} = A_{ij}B_{ji}, \boldsymbol{{C}} = \mathbb{A} : \boldsymbol{ {B}} = A_{ijkl}B_{lk}\mathbf{e}_{i} \otimes\mathbf{e}_{j}\),

    • Transpose: A T=A ji e i e j ,

    • Left transpose: \(\mathbb{A}^{LT} = A_{jikl}\mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes\mathbf{e}_{k} \otimes\mathbf{e}_{l}\),

    • Right transpose: \(\mathbb{A}^{RT} = A_{ijlk}\mathbf{e}_{i} \otimes \mathbf{e}_{j} \otimes\mathbf{e}_{k} \otimes\mathbf{e}_{l}\),

    • Gradient operator: \(\boldsymbol{\nabla} = \mathbf{e}_{i} \frac{\partial }{\partial x_{i}}\).

Appendix B: Jacobian terms and derivatives

In the solution of (58a), (58b), the Jacobian terms given are required. These can be determined by taking the partial derivatives of the residuals r τ and r D with respect to the unknowns τ and D. This yields the following expressions:

$$\begin{aligned} \frac{\partial\boldsymbol{{r}}_{\boldsymbol{\tau}}}{\partial \boldsymbol{\tau}} \bigg|_{i} =& {^{4} \mathbb{I}} + \Delta t \theta(T){^{4}\mathbb{H}^{i}}: \biggl[ Z\bigl(\varphi^{i},D^{i}\bigr)\frac{\partial\boldsymbol{{N}}}{\partial \boldsymbol{\tau}} \bigg|_{i}+ \boldsymbol{{N}}^{i} \otimes\frac{\partial Z(\varphi,D)}{\partial \boldsymbol{\tau}} \bigg|_{i} \biggr], \end{aligned}$$
(59)
$$\begin{aligned} \frac{\partial\boldsymbol{{r}}_{\boldsymbol{\tau}}}{\partial D} \bigg|_{i} =& \Delta t \theta(T) \frac{\partial Z(\varphi,D)}{\partial D} \bigg|_{i}{^{4}\mathbb{H}^{i}}: \boldsymbol{{N}}^{i}, \end{aligned}$$
(60)
$$\begin{aligned} \frac{\partial r_{D}}{\partial\boldsymbol{\tau}} \bigg|_{i} =& -\Delta t \theta(T)h \bigl(D^{i}\bigr)\frac{\partial Z(\varphi,D)}{\partial \boldsymbol{\tau}} \bigg|_{i}, \end{aligned}$$
(61)

and

$$\begin{aligned} \frac{\partial r_{D}}{\partial D} \bigg|_{i} &= 1-\Delta t \theta(T) \biggl\{ h\bigl(D^{i}\bigr) \biggl[\frac{\partial Z(\varphi ,D)}{\partial D} \bigg|_{i}-\frac{d r(D)}{d D} \bigg|_{i} \biggr] \\ &\quad{}+\frac{d h(D)}{d D} \bigg|_{i} \bigl[ Z\bigl(\varphi^{i},D^{i} \bigr) - r\bigl(D^{i}\bigr) \bigr] \biggr\} . \end{aligned}$$
(62)

Furthermore, the required derivatives are:

$$\begin{aligned} \frac{\partial Z(\varphi,D)}{\partial\boldsymbol{\tau}} \bigg|_{i} =& \frac{ n Z(\varphi^{i},D^{i})}{ D^{i}} \coth \biggl[ \frac{\varphi^{i}}{ D^{i}} \biggr]\boldsymbol{{N}}^{i}, \end{aligned}$$
(63)
$$\begin{aligned} \frac{\partial Z(\varphi,D)}{\partial D} \bigg|_{i} =& -\frac{ n Z(\varphi^{i},D^{i})}{{D^{i}}^{2}} \coth \biggl[ \frac{\varphi^{i}}{ D^{i}} \biggr]\varphi^{i}, \end{aligned}$$
(64)
$$\begin{aligned} \frac{\partial\boldsymbol{{N}}}{\partial\boldsymbol{\tau}} \bigg|_{i} =& \frac{1}{\tau_{eq}} \biggl[ \frac {3}{2}{^{4}\mathbb{I}} -\frac{1}{2}\boldsymbol{{I}}\otimes \boldsymbol{{I}}- \boldsymbol{{N}}^{i}\otimes \boldsymbol{{N}}^{i} \biggr], \end{aligned}$$
(65)
$$\begin{aligned} \frac{d h(D)}{d D} \bigg|_{i} =& \frac{ m}{\delta C {\varphi_{D}}^{i}} \bigl[1 - {\varphi_{D}}^{i} \coth\bigl[ {\varphi_{D}}^{i} \bigr] \bigr]h\bigl(D^{i}\bigr), \end{aligned}$$
(66)
$$\begin{aligned} \frac{d r(D)}{d D} \bigg|_{i} =& \frac{ n}{\delta C} \coth \bigl[ {\varphi _{D}}^{i}\bigr] r\bigl(D^{i} \bigr). \end{aligned}$$
(67)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pina, J.C., Kouznetsova, V.G. & Geers, M.G.D. Elevated temperature creep of pearlitic steels: an experimental–numerical approach. Mech Time-Depend Mater 18, 611–631 (2014). https://doi.org/10.1007/s11043-014-9244-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-014-9244-6

Keywords

Navigation