Skip to main content
Log in

Bulk and shear characterization of bituminous mixtures in the linear viscoelastic domain

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Traffic loads and temperature variations produce three-dimensional stress–strain fields inside road pavements, and therefore the characterization of bituminous mixtures in different deformation modes is important for prediction of the performance of pavement structures. This paper presents a methodology for the bulk and shear characterization of bituminous mixtures in the linear viscoelastic domain, under the hypothesis of material isotropy, by means of uniaxial harmonic tests with the measurement of axial and transverse strains. The theoretical approach was based on the application of the elastic–viscoelastic correspondence principle and was validated by performing tension–compression tests at selected frequencies and temperatures on asphalt concrete specimens characterized by different volumetric properties. The results showed that since uniaxial tests induced both volume and shape variations, the simultaneous measurement of the complex bulk and shear moduli was possible. The validity of the time–temperature superposition principle was also verified for both deformation modes, allowing the construction of master curves for the bulk and shear moduli. The results also showed that the total dissipated energy could be decomposed into its volumetric and deviatoric fractions with excellent accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. The “−” sign of the complex exponential in Eq. (6) has been converted in the π rotation in the complex plane by using the well-known Euler formula exp(jπ)=−1.

References

  • AASHTO: Provisional Standards TP7. American Association of State Highway Transportation Officials, Washington (1995)

    Google Scholar 

  • Airey, G.D., Rahimzadeh, B., Collop, A.C.: Viscoelastic linearity limits for bituminous materials. Mater. Struct. 36(10), 643–647 (2003)

    Article  Google Scholar 

  • Andrei, D., Witczak, M., Mirza, M.: Development of a revised predictive model for the dynamic (complex) modulus of asphalt mixtures. Development of the 2002 Guide for the Design of New and Rehabilitated Pavement Structures, NCHRP (1999)

  • Chailleux, E., De La Roche, C., Piau, J.M.: Modeling of complex modulus of bituminous mixtures measured in tension/compression to estimate secant modulus in indirect tensile test. Mater. Struct. 44(3), 641–657 (2011)

    Article  Google Scholar 

  • Christensen, D.W., Anderson, D.A.: Interpretation of dynamic mechanical test data for paving grade asphalt cements (with discussion). J. Assoc. Asph. Paving Technol. 61, 67–116 (1992)

    Google Scholar 

  • Cowpertwait, P.S., Metcalfe, A.V.: Introductory Time Series with R. Springer, Berlin (2009)

    MATH  Google Scholar 

  • Delaporte, B., Di Benedetto, H., Chaverot, P., Gauthier, G.: Linear viscoelastic properties of bituminous materials: from binders to mastics (with discussion). J. Assoc. Asph. Paving Technol. 76, 455–494 (2007)

    Google Scholar 

  • Di Benedetto, H., De La Roche, C.: State of the art on stiffness modulus and fatigue of bituminous mixtures. In: Franken, L. (ed.) Bituminous Binders and Mixtures: State of the Art and Interlaboratory Tests on Mechanical Behavior and Mix Design, pp. 137–180. E & FN Spon, London & New York (1998)

    Google Scholar 

  • Di Benedetto, H., Delaporte, B., Sauzéat, C.: Three-dimensional linear behavior of bituminous materials: experiments and modeling. Int. J. Geomech. 7(2), 149–157 (2007)

    Article  Google Scholar 

  • Emri, I.: Rheology of solid polymers. Rheol. Rev. 2005, 49–100 (2005)

    Google Scholar 

  • Graziani, A., Bocci, M., Canestrari, F.: Complex Poisson’s ratio of bituminous mixtures: measurement and modeling. Mater. Struct. 47(7), 1131–1148 (2014). doi:10.1617/s11527-013-0117-2

    Article  Google Scholar 

  • Lakes, R.S., Wineman, A.: On Poisson’s ratio in linearly viscoelastic solids. J. Elast. 85(1), 45–63 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Nguyen, H.M., Pouget, S., Di Benedetto, H., Sauzéat, C.: Time–temperature superposition principle for bituminous mixtures. Eur. J. Environ. Civ. Eng. 13(9), 1095–1107 (2009)

    Article  Google Scholar 

  • Olard, F., Di Benedetto, H.: General “2S2P1D” model and relation between the linear viscoelastic behaviours of bituminous binders and mixes. Road Mater, Pavement Des. 4(2), 185–224 (2003)

    Google Scholar 

  • Oppenheim, A.V., Willsky, A.S., Nawab, S.H.: Signals and Systems, vol. 2, 2nd edn. Prentice Hall International, Englewood Cliffs (1996)

    Google Scholar 

  • Pellinen, T.K.: Complex modulus characterization of asphalt concrete. In: Kim, Y.R. (ed.) Modeling of Asphalt Concrete. ASCE Press, New York (2009). Chap. 4

    Google Scholar 

  • Pellinen, T.K., Witczak, M.W.: Use of stiffness of hot-mix asphalt as a simple performance test. Transp. Res. Rec. J. Transp. Res. Board. 1789(1), 80–90 (2002)

    Article  Google Scholar 

  • Pouget, S., Sauzéat, C., Benedetto, H.D., Olard, F.: Viscous energy dissipation in asphalt pavement structures and implication for vehicle fuel consumption. J. Mater. Civ. Eng. 24(5), 568–576 (2011)

    Article  Google Scholar 

  • R Developement Core Team: R: a language and environment for statistical computing (2013). http://www.R-project.org/

  • Saadeh, S., Masad, E., Stuart, K., Abbas, A., Papagainnakis, T., Al-Khateeb, G.: Comparative analysis of axial and shear moduli of asphalt mixes. J. Assoc. Asph. Paving Technol. 72, 122–153 (2003)

    Google Scholar 

  • Schwartz, C.W., Li, R., Ceylan, H., Kim, S., Gopalakrishnan, K.: Global sensitivity analysis of mechanistic-empirical performance predictions for flexible pavements. In: TRB 92nd Annual Meeting. Transportation Research Board, Washington (2013)

    Google Scholar 

  • Shenkman, A.L.: Circuit Analysis for Power Engineering Handbook, pp. 57–199. Springer, Berlin (1998)

    Book  Google Scholar 

  • Tschoegl, N.W.: The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  • Tschoegl, N.W., Knauss, W.G., Emri, I.: Poisson’s ratio in linear viscoelasticity—a critical review. Mech. Time-Depend. Mater. 6(1), 3–51 (2002)

    Article  Google Scholar 

  • Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77(14), 3701–3707 (1955)

    Article  Google Scholar 

  • Witczak, M., Kaloush, K., Pellinen, T., El-Basyouny, M., Von Quintus, H.: NCHRP Report 465: simple performance test for superpave mix design. Tech. rep., National Cooperative Highway Research Program (2002)

  • Wood, D.M.: Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  • Yusoff, N.I.M., Mounier, D., Marc-Stéphane, G., Rosli Hainin, M., Airey, G.D., Di Benedetto, H.: Modelling the rheological properties of bituminous binders using the 2S2P1D model. Constr. Build. Mater. 38, 395–406 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Graziani.

Appendix

Appendix

The amplitude and phase of the bulk and shear strain phasors defined by Eqs. (13a), (13b) can be obtained by simple phasor addition.

Given the two phasors

$$\begin{aligned} A^{*} =& a_{0} \exp(\mathrm{j}\omega+ \theta_{a}) = a_{0}\cos\theta_{a} + \mathrm{j} a_{0}\sin \theta_{a}, \\ B^{*} =& b_{0} \exp(\mathrm{j}\omega+ \theta_{b}) = b_{0}\cos\theta_{b} + \mathrm{j} b_{0}\sin \theta_{b}, \end{aligned}$$

their sum is

$$ C^{*} = A^{*} + B^{*} = c_{0} \exp(\mathrm{j}\omega+ \theta_{c}) = c_{0}\cos\theta _{c} + \mathrm{j} c_{0}\sin\theta_{c}, $$

where

$$\begin{aligned} c_{0}^{2} =& (a_{0}\cos\theta_{a} + b_{0}\cos\theta_{b})^{2} + (a_{0}\sin \theta_{a} + b_{0}\sin\theta_{b})^{2}, \\ \tan\theta_{c} =& \frac{a_{0}\sin\theta_{a} + b_{0}\sin\theta _{b}}{a_{0}\cos\theta_{a} + b_{0}\cos\theta_{b}}. \end{aligned}$$

Hence, for the absolute values of \(\varepsilon ^{*}_{p}\) and \(\varepsilon ^{*}_{q}\) defined by Eqs. (13a), (13b), we have:

$$\begin{aligned} \varepsilon _{p,0}^{2} =& \bigl[\varepsilon _{1,0}+2 \varepsilon _{2,0}\cos(-\delta _{2})\bigr]^{2} + \bigl[2 \varepsilon _{2,0}\sin(-\delta_{2})\bigr]^{2} \\ =& \varepsilon _{1,0}^2 + 4\varepsilon _{2,0}^2 + 4 \varepsilon _{1,0}\varepsilon _{2,0} \cos\delta_2 \\ =& \varepsilon _{1,0}^2 + 4\varepsilon _{2,0}^2 - 4 \varepsilon _{1,0}\varepsilon _{2,0} \cos\delta_\nu \\ =& \varepsilon _{1,0}^2 \bigl( 1 + 4\nu_{0}^{2} - 4\nu_{0}\cos\delta_\nu \bigr), \\ \varepsilon _{q,0}^{2} =& \biggl[ \frac{2}{3} \varepsilon _{1,0}-\frac {2}{3}\varepsilon _{2,0}\cos(- \delta_{2}) \biggr]^{2} + \biggl[ -\frac {2}{3} \varepsilon _{2,0}\sin(-\delta_{2}) \biggr]^{2} \\ =& \frac{4}{9} \bigl[ \varepsilon _{1,0}^2 + \varepsilon _{2,0}^2 - 2 \varepsilon _{2,0} \varepsilon _{1,0} \cos\delta_2 \bigr] \\ =& \frac{4}{9} \bigl[ \varepsilon _{1,0}^2 + \varepsilon _{2,0}^2 + 2 \varepsilon _{2,0} \varepsilon _{1,0} \cos\delta_\nu \bigr] \\ =& \frac{4}{9} \varepsilon _{1,0}^2 \bigl( 1 + \nu_{0}^2 + 2 \nu _{0} \cos \delta_\nu \bigr), \end{aligned}$$

whereas, for the phases, we have:

$$\begin{aligned} \tan\delta_{\varepsilon p} =& \frac{2\varepsilon _{2,0}\sin(-\delta _{2})}{\varepsilon _{1,0}+2\varepsilon _{2,0}\cos(-\delta_{2})} \\ =& \frac{-2\varepsilon _{2,0}\sin\delta_2}{\varepsilon _{1,0}+2\varepsilon _{2,0}\cos\delta_2} = \frac{2\nu_{0}\sin\delta_\nu}{1-2\nu_{0}\cos\delta_\nu} \\ =& \tan\delta_{\nu}\frac{2\nu_{0}\cos\delta_\nu}{1-2\nu_{0}\cos \delta_\nu}, \\ \tan(-\delta_{\varepsilon q}) =& \frac{-\varepsilon _{2,0}\sin(-\delta _{2})}{\varepsilon _{1,0}-\varepsilon _{2,0}\cos\delta_{2}} \\ =& \frac{\varepsilon _{2,0}\sin\delta_2}{\varepsilon _{1,0}-\varepsilon _{2,0}\cos \delta_2} = \frac{-\varepsilon _{2,0}\sin\delta_\nu}{ \varepsilon _{1,0}+\varepsilon _{2,0}\cos\delta_\nu} = \frac{-\nu_{0}\sin\delta_\nu}{1+\nu_{0}\cos\delta_\nu} \\ =& -\tan\delta_{\nu}\frac{\nu_{0}\cos\delta_\nu}{1+\nu_{0}\cos \delta_\nu}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graziani, A., Bocci, E. & Canestrari, F. Bulk and shear characterization of bituminous mixtures in the linear viscoelastic domain. Mech Time-Depend Mater 18, 527–554 (2014). https://doi.org/10.1007/s11043-014-9240-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-014-9240-x

Keywords

Navigation