Mechanics of Time-Dependent Materials

, Volume 18, Issue 3, pp 475–491 | Cite as

Stress–strain time-dependent behavior of A356.0 aluminum alloy subjected to cyclic thermal and mechanical loadings

  • G. H. Farrahi
  • M. Ghodrati
  • M. Azadi
  • M. Rezvani Rad


This article presents the cyclic behavior of the A356.0 aluminum alloy under low-cycle fatigue (or isothermal) and thermo-mechanical fatigue loadings. Since the thermo-mechanical fatigue (TMF) test is time consuming and has high costs in comparison to low-cycle fatigue (LCF) tests, the purpose of this research is to use LCF test results to predict the TMF behavior of the material. A time-independent model, considering the combined nonlinear isotropic/kinematic hardening law, was used to predict the TMF behavior of the material. Material constants of this model were calibrated based on room-temperature and high-temperature low-cycle fatigue tests. The nonlinear isotropic/kinematic hardening law could accurately estimate the stress–strain hysteresis loop for the LCF condition; however, for the out-of-phase TMF, the condition could not predict properly the stress value due to the strain rate effect. Therefore, a two-layer visco-plastic model and also the Johnson–Cook law were applied to improve the estimation of the stress–strain hysteresis loop. Related finite element results based on the two-layer visco-plastic model demonstrated a good agreement with experimental TMF data of the A356.0 alloy.


Finite element simulation Stress–strain time-dependent behavior Aluminum–silicon–magnesium alloy Low-cycle fatigue Thermo-mechanical fatigue 


  1. ABAQUS: User and theory manuals, Version 6.5 (2004) Google Scholar
  2. Angeloni, M.: Fatigue life evaluation of A356 aluminum alloy used for engine cylinder head. Ph.D. Thesis, University of Sao Paulo, Brazil (2012) Google Scholar
  3. Azadi, M., Farrahi, G.H., Winter, G., Eichlseder, W.: Experimental fatigue lifetime of un-coated and coated aluminum alloy under isothermal and thermo-mechanical loadings. Ceram. Int. 39, 9099–9107 (2013a) CrossRefGoogle Scholar
  4. Azadi, M., Farrahi, G.H., Winter, G., Eichlseder, W.: Thermo-mechanical behaviours of light alloys in comparison to high temperature isothermal behaviours. Mater. High Temp. 31(1), 12–17 (2013b) CrossRefGoogle Scholar
  5. Chaboche, J.L.: Time-independent constitutive theories for cyclic plasticity. Int. J. Plast. 2(2), 149–188 (1986) CrossRefzbMATHGoogle Scholar
  6. Chaboche, J.L.: A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24, 1642–1693 (2008) CrossRefzbMATHGoogle Scholar
  7. Deshpande, A., Leen, S.B., Hyde, T.H.: Experimental and numerical characterization of the cyclic thermo-mechanical behavior of a high temperature forming tool alloy. ASME J. Manuf. Sci. Eng. 132(5), 1–12 (2010) Google Scholar
  8. Eichlseder, W., Winter, G., Koeberl, H.: Material and fatigue life models for thermo-mechanical loaded components. Mater. Sci. Eng. Technol. 39(10), 777–782 (2008) Google Scholar
  9. Emami, A.R., Begum, S., Chen, D.L., Skszek, T., Niu, X.P., Zhang, Y., Gabbianelli, F.: Cyclic deformation behavior of a cast aluminum alloy. Mater. Sci. Eng. A 516, 31–41 (2009) CrossRefGoogle Scholar
  10. Farrahi, G.H., Azadi, M., Winter, G., Eichlseder, W.: Thermo-mechanical and low cycle fatigue behavior of aluminum alloy cylinder head. In: The International Conference on Experimental Solid Mechanics and Dynamics, Tehran, Iran (2012) Google Scholar
  11. Farrahi, G.H., Azadi, M., Winter, G., Eichlseder, W.: A new energy-based isothermal and thermo-mechanical fatigue lifetime prediction model for aluminum–silicon–magnesium alloy. Fatigue Fract. Eng. Mater. Struct. 36(12), 1323–1335 (2013) CrossRefGoogle Scholar
  12. Farrahi, G.H., Shamloo, A., Felfeli, M., Azadi, M.: Numerical simulations of cyclic behaviors in light alloys under isothermal and thermo-mechanical fatigue loadings. Mater. Des. 56, 245–253 (2014) CrossRefGoogle Scholar
  13. Huter, P., Karolczuk, A., Stanojevic, A., Winter, G.: Automated parameter finding procedure for material parameters of TMF-hysteresis. In: 3rd Fatigue Symposium Leoben, Leoben, Austria (2012) Google Scholar
  14. Hyde, C.J., Sun, W., Leen, S.B.: Cyclic thermo-mechanical material modeling and testing of 316 stainless steel. Int. J. Press. Vessels Piping 87, 365–372 (2010) CrossRefGoogle Scholar
  15. Koeberl, H., Winter, G., Leitner, H., Eichlseder, W.: Comparison of the temperature and pre-aging influences on the low cycle fatigue and thermo-mechanical fatigue behavior of copper alloys (CuCoBe/CuCo2Be). J. ASTM Int. 5(9), 641–658 (2008) CrossRefGoogle Scholar
  16. Koeberl, H., Winter, G., Eichlseder, W.: Lifetime calculation of thermo-mechanically loaded materials (Al, Cu, Ni, and Fe alloys) based on empirical methods. J. ASTM Int. 8(1), 589–603 (2009) Google Scholar
  17. Moridi, A., Azadi, M., Farrahi, G.H.: Coating thickness and roughness effect on stress distribution of A356.0 under thermo-mechanical loadings. Proc. Eng. 10, 1372–1377 (2011) CrossRefGoogle Scholar
  18. Moridi, A., Azadi, M., Winter, G., Farrahi, G.H., Eichlseder, W.: Modeling of high temperature cyclic behavior in aluminum alloy under thermo-mechanical and isothermal fatigue conditions. In: 3rd Fatigue Symposium Leoben, Leoben, Austria (2012) Google Scholar
  19. Moridi, A., Azadi, M., Farrahi, G.H.: Thermo-mechanical stress analysis of thermal barrier coating system considering thickness and roughness effects. Surf. Coat. Technol. 243, 91–99 (2014) CrossRefGoogle Scholar
  20. Riedler, M., Leitner, H., Prillhofer, B., Winter, G., Eichlseder, W.: Lifetime simulation of thermo-mechanically loaded component. Meccanica 42(1), 47–59 (2007) CrossRefzbMATHGoogle Scholar
  21. Rosa, U., Nagode, M., Fajdiga, M.: Strain-life approach in thermo-mechanical fatigue evaluation of complex structures. Fatigue Fract. Eng. Mater. Struct. 30, 808–822 (2007) CrossRefGoogle Scholar
  22. Roy, M.J., Maijer, D.M., Dancoine, L.: Constitutive behavior of as-cast A356. Mater. Sci. Eng. A 548, 195–205 (2012) CrossRefGoogle Scholar
  23. Saad, A.A.: Cyclic plasticity and creep of power plant materials. Ph.D. Thesis, University of Nottingham, England (2012) Google Scholar
  24. Sehitoglu, H., Qing, X., Smith, T., Maier, H.J., Allison, J.A.: Stress–strain response of a cast 319-T6 aluminum under thermo-mechanical loading. Metall. Mater. Trans. 31A, 139–151 (2000) CrossRefGoogle Scholar
  25. Seifert, T., Maier, G.: Consistent linearization and finite element implementation of an incrementally objective canonical from return mapping algorithm for large deformation inelasticity. Int. J. Numer. Methods Eng. 75, 690–708 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  26. Seifert, T., Schmidt, I.: Plastic yielding in cyclically loaded porous materials. Int. J. Plast. 25, 2435–2453 (2009) CrossRefGoogle Scholar
  27. Seifert, T., Maier, G., Uihlein, A., Lang, K.H., Riedel, H.: Mechanism-based thermo-mechanical fatigue life prediction of cast iron, Part II: Comparison of model predictions with experiments. Int. J. Fatigue 32, 1368–1377 (2010) CrossRefGoogle Scholar
  28. Smith, T.J., Maier, H.J., Sehitoglu, H., Fleury, E., Allison, J.A.: Modeling high-temperature stress–strain behavior of cast aluminum alloys. Metall. Mater. Trans. 31A, 133–146 (1999) CrossRefGoogle Scholar
  29. Tanner, D.W.J., Sun, W., Hyde, T.H.: FE analysis of a notched bar under thermo-mechanical fatigue using a unified viscoplasticity model. Proc. Eng. 10, 1081–1086 (2011) CrossRefGoogle Scholar
  30. Toda, H., Katano, J., Kobayashi, T., Akohori, T., Niinomi, M.: Assessment of thermo-mechanical fatigue behaviors of cast Al–Si alloys by experiments and multi-step numerical simulation. Mater. Trans. 46(1), 111–117 (2005) CrossRefGoogle Scholar
  31. Wang, P., Cui, L., Lyschik, M., Scholz, A., Berger, C., Oechsner, M.: A local extrapolation based calculation reduction method for the application of constitutive material models for creep fatigue assessment. Int. J. Fatigue 44, 253–259 (2012) CrossRefGoogle Scholar
  32. Zineb, A., Abdellatif, K., Cabrera, F.M.: Effect of cycle duration and phasing on thermo-mechanical fatigue of dog-bone specimens made from steel. Am. J. Eng. Appl. Sci. 3(3), 740–748 (2010) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • G. H. Farrahi
    • 1
  • M. Ghodrati
    • 1
  • M. Azadi
    • 2
  • M. Rezvani Rad
    • 1
  1. 1.School of Mechanical EngineeringSharif University of TechnologyTehranIran
  2. 2.Fatigue and Wear in Materials WorkgroupIrankhodro Powertrain Company (IPCO)TehranIran

Personalised recommendations