Mechanics of Time-Dependent Materials

, Volume 17, Issue 4, pp 581–595 | Cite as

Numerical analysis of the creep of the contact and recovery of the imprint on amorphous polymer surfaces

  • T. Chatel
  • V. Le Houérou
  • H. Pelletier
  • C. Gauthier


This article attempts to analyze the viscoelastic behavior of an amorphous polymer during a microindentation test. The viscoelastic behavior of an amorphous polymer (poly(methyl methacrylate), PMMA) is derived from different relaxation tests performed under different applied true strains. A generalized Maxwell model is then used to identify the mechanical parameters of the viscoelastic behavior. The numerical results display good correlation with experiments during the creep phase. The uniaxial relaxation test used to identify the viscoelastic behavior is chosen in relation to the experimental conditions of indentation. The results obtained for the recovery phase allow a first analysis of the strain and von Mises equivalent stress fields during indentation test. The recovery of the imprint left on the surface seems to depend on the location of the strain maxima. If a strain level of 10 % or more reaches the surface of the deformed volume, a permanent imprint is obtained. Otherwise the residual imprint may be considered to be completely healed even if the subsurface has partially yielded during the loading phase or creep time.


Indentation Numerical analysis Viscoelasticity Polymer Creep Recovery Spherical tip 


  1. Briscoe, B.J., et al.: Scratching maps for polymers. Wear 200(1–2), 137–147 (1996) CrossRefGoogle Scholar
  2. Chatel, T., et al.: Creep of the contact with a spherical tip and recovery of the imprint on amorphous polymer surfaces. J. Phys. D, Appl. Phys. 44, 375403 (2011) CrossRefGoogle Scholar
  3. Cheng, L., et al.: Flat-punch indentation of viscoelastic material. J. Polym. Sci., Part B, Polym. Phys. 38(1), 10–22 (2000) CrossRefGoogle Scholar
  4. Cheng, L., et al.: Spherical-tip indentation of viscoelastic material. Mech. Mater. 37(1), 213–226 (2005) CrossRefGoogle Scholar
  5. Dooling, P.J., Buckley, C.P., Hinduja, S.: The onset of nonlinear viscoelasticity in multiaxial creep of glassy polymers: A constitutive model and its application to PMMA. Polym. Eng. Sci. 38(6), 892–904 (1998) CrossRefGoogle Scholar
  6. Galli, M., Oyen, M.L.: Creep properties from indentation tests by analytical and numerical techniques. Int. J. Mater. Res. 100(7), 954–959 (2009) CrossRefGoogle Scholar
  7. Hertz, H.: Über die Berührung fester elastischer Körper. J. Reine Angew. Math. 92, 156–171 (1881) Google Scholar
  8. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985) CrossRefMATHGoogle Scholar
  9. Kameda, J., Yokoyama, Y., Allen, T.R.: Strain-controlling mechanical behavior in noncrystalline materials I: Onset of plastic deformation. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 448(1–2), 235–241 (2007) CrossRefGoogle Scholar
  10. Le Houérou, V.: Scratchability of soda-lime silica glasses. Ph.D. thesis, University of Rennes, France (2005) Google Scholar
  11. Lee, E.H., Radok, J.R.M.: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438–444 (1960) MathSciNetCrossRefMATHGoogle Scholar
  12. Lu, H., et al.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7(3–4), 189–207 (2003) CrossRefGoogle Scholar
  13. Marano, C., Rink, M.: Shear yielding threshold and viscoelasticity in an amorphous glassy polymer: A study on a styrene-acrylonitrile copolymer. Polymer 42(5), 2113–2119 (2001) CrossRefGoogle Scholar
  14. Pelletier, C.G.N., et al.: Quantitative assessment and prediction of contact area development during spherical tip indentation of glassy polymers. Philos. Mag. 88(9), 1291–1306 (2008) CrossRefGoogle Scholar
  15. Pelletier, H., et al.: Viscoelastic and elastic-plastic behaviors of amorphous polymeric surfaces during scratch. Tribol. Int. 41(11), 975–984 (2008) CrossRefGoogle Scholar
  16. Samyn, P., et al.: Full-scale analysis of deformation and stress distribution for constrained composite bearing elements under compressive yielding conditions. Mater. Des. 28(9), 2450–2470 (2007) CrossRefGoogle Scholar
  17. Tabor, D.: The hardness of solids. Rev. Phys. Technol. 1, 145–179 (1970) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • T. Chatel
    • 1
  • V. Le Houérou
    • 1
  • H. Pelletier
    • 1
  • C. Gauthier
    • 1
  1. 1.CNRS Institut Charles SadronStrasbourg Cedex 2France

Personalised recommendations