Skip to main content
Log in

Theoretical and computational modelling of instrumented indentation of viscoelastic composites

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

In this study, we investigate the indentation of viscoelastic composites. The composite is assumed to consist of two phases, i.e., the filler and the matrix, which are linear elastic and linear viscoelastic material, respectively. Two cases are investigated: (1) hard fillers are scattered in a very soft matrix; (2) the matrix is much harder than the fillers. Particular attention is paid to the correlation between the indentation relaxation loads and the material and geometric parameters of the composite system. To this end, we perform a theoretical analysis which is followed by finite element analysis. Our main result is a simple relation correlating the reduced relaxation modulus of the matrix, E m,r (t), with the indentation relaxation load P(t), i.e., E m,r (t)=P(t)/P(0), where P(0) represents the indentation load at the starting point of the relaxation test. This result on one hand indicates that for the two cases under study the relaxation feature of the indentation load is determined by the reduced relaxation modulus of the matrix. On the other hand, the result shows that the reduced relaxation modulus of the matrix of the composites may be simply determined from the indentation relaxation load without invoking the knowledge of both the indenter geometry and the profile of indented solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABAQUS User’s Manual, version 6.8: Providence: Hibbit, Karlsson & Sorenson (2008)

  • Barenblatt, G.I.: Scaling, Self-similarity and Intermediate Asymptotics. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  • Cao, Y.P.: Determination of the creep exponent of a power-law creep solid using indentation tests. Mech. Time-Depend. Mater. 11, 159–172 (2007)

    Article  Google Scholar 

  • Cao, Y.P., Ma, D.C., Raabe, D.: The use of flat punch indentation to determine the viscoelastic properties in the time and frequency domains of a soft layer bonded to a rigid substrate. Acta Biomaterialia 5, 240–248 (2009)

    Article  Google Scholar 

  • Cao, Y.P., Ji, X.Y., Feng, X.Q.: Geometry independence of the normalized relaxation functions of viscoelastic materials in indentation. Philos. Mag. 90, 1639–1655 (2010)

    Article  Google Scholar 

  • Cheng, Y.T., Cheng, C. M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R Rep. 44, 91–149 (2004)

    Article  Google Scholar 

  • Cheng, Y.T., Yang, F.Q.: Obtaining shear relaxation modulus and creep compliance of linear viscoelastic materials from instrumented indentation using axisymmetric indenters of power-law profiles. J. Mater. Res. 24, 3013–3017 (2009)

    Article  Google Scholar 

  • Cheng, Y.T., Ni, W.Y., Cheng, C.M.: Nonlinear analysis of oscillatory indentation in elastic and viscoelastic solids. Phys. Rev. Lett. 97, 075506 (2006)

    Article  Google Scholar 

  • Christensen, R.M.: Theory of Viscoelasticity: An Introduction. Academic Press, San Diego (1982)

    Google Scholar 

  • Ebenstein, D.M., Pruitt, L.A.: Nanoindentation of biological materials. Nano Today 1, 26 (2006)

    Article  Google Scholar 

  • Fischer-Cripps, A.C.: Multiple-frequency dynamic nanoindentation testing. J. Mater. Res. 19, 2981–2989 (2004)

    Article  Google Scholar 

  • Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1993)

    Google Scholar 

  • Giannakopoulos, A.E.: Elastic and viscoelastic indentation of flat surfaces by pyramid indentors. J. Mech. Phys. Solids 54, 1305–1332 (2006)

    Article  MATH  Google Scholar 

  • Graham, G.A.C.: The contact problem in the linear theory of viscoelasticity. Int. J. Eng. Sci. 3, 27–45 (1965)

    Article  MATH  Google Scholar 

  • Herbert, E.G., Oliver, W.C., Lumsdaine, A., Pharr, G.M.: Measuring the constitutive behavior of viscoelastic solids in the time and frequency domain using flat punch nanoindentation. J. Mater. Res. 24, 626–637 (2009)

    Article  Google Scholar 

  • Huang, G., Lu, H.B.: Measurement of Young’s relaxation modulus using nanoindentation. Mech. Time-Depend. Mater. 10, 229–243 (2006)

    Article  MathSciNet  Google Scholar 

  • Levental, I., Georges, P.C., Janmey, P.A.: Soft biological materials and their impact on cell function. Soft Matter 3, 299–206 (2007)

    Article  Google Scholar 

  • Lee, B., Han, L., Frank, E.H., Chubinskaya, S., Ortiz, C., Grodzinsky, A.J.: Dynamic mechanical properties of the tissue-engineered matrix associated with individual chondrocytes. J. Biomech. 43, 469–476 (2010)

    Article  Google Scholar 

  • Liu, Y.J., Nishimura, N., Otani, Y.: Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method. Comput. Mater. Sci. 34, 173–187 (2005)

    Article  Google Scholar 

  • Lu, H., Wang, B., Ma, J., Huang, G., Viswanathan, H.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189–207 (2003)

    Article  Google Scholar 

  • Ngan, A.H.W., Wang, H.T., Tang, B., Sze, K.Y.: Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation. Int. J. Solids Struct. 42, 1831–1846 (2005)

    Article  MATH  Google Scholar 

  • Oyen, M.L.: Spherical indentation creep following ramp loading. J. Mater. Res. 20, 2094–2100 (2005)

    Article  Google Scholar 

  • Oyen, M.L.: Sensitivity of polymer nanoindentation creep measurements to experimental variables. Acta Mater. 55, 3633 (2007)

    Article  Google Scholar 

  • Oyen, M.L., Cook, R.F.J.: Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J. Mater. Res. 18, 139 (2003)

    Article  Google Scholar 

  • Ramakrishna, S., Huang, Z.M., Kumar, G.V., Batchelor, A.W., Mayer, J.: An Introduction to Biocomposites. Imperial College Press, London (2004)

    Google Scholar 

  • Shimizu, S., Yanagimoto, T., Sakai, M.: Pyramidal indentation load-depth curve of viscoelastic materials. J. Mater. Res. 14, 4075–4086 (1999)

    Article  Google Scholar 

  • Thomas, V., Dean, D.R., Jose, M.V., Mathew, B., Chowdhury, S., Vohra, Y.K.: Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite. Biomacromolecules 8, 631–637 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Ping Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, YP., Chen, KL. Theoretical and computational modelling of instrumented indentation of viscoelastic composites. Mech Time-Depend Mater 16, 1–18 (2012). https://doi.org/10.1007/s11043-011-9132-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-011-9132-2

Keywords

Navigation