Mechanics of Time-Dependent Materials

, Volume 16, Issue 1, pp 1–18 | Cite as

Theoretical and computational modelling of instrumented indentation of viscoelastic composites

  • Yan-Ping Cao
  • Ke-Lin Chen


In this study, we investigate the indentation of viscoelastic composites. The composite is assumed to consist of two phases, i.e., the filler and the matrix, which are linear elastic and linear viscoelastic material, respectively. Two cases are investigated: (1) hard fillers are scattered in a very soft matrix; (2) the matrix is much harder than the fillers. Particular attention is paid to the correlation between the indentation relaxation loads and the material and geometric parameters of the composite system. To this end, we perform a theoretical analysis which is followed by finite element analysis. Our main result is a simple relation correlating the reduced relaxation modulus of the matrix, E m,r (t), with the indentation relaxation load P(t), i.e., E m,r (t)=P(t)/P(0), where P(0) represents the indentation load at the starting point of the relaxation test. This result on one hand indicates that for the two cases under study the relaxation feature of the indentation load is determined by the reduced relaxation modulus of the matrix. On the other hand, the result shows that the reduced relaxation modulus of the matrix of the composites may be simply determined from the indentation relaxation load without invoking the knowledge of both the indenter geometry and the profile of indented solids.


Indentation Viscoelastic composites Finite element simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABAQUS User’s Manual, version 6.8: Providence: Hibbit, Karlsson & Sorenson (2008) Google Scholar
  2. Barenblatt, G.I.: Scaling, Self-similarity and Intermediate Asymptotics. Cambridge University Press, Cambridge (1996) MATHGoogle Scholar
  3. Cao, Y.P.: Determination of the creep exponent of a power-law creep solid using indentation tests. Mech. Time-Depend. Mater. 11, 159–172 (2007) CrossRefGoogle Scholar
  4. Cao, Y.P., Ma, D.C., Raabe, D.: The use of flat punch indentation to determine the viscoelastic properties in the time and frequency domains of a soft layer bonded to a rigid substrate. Acta Biomaterialia 5, 240–248 (2009) CrossRefGoogle Scholar
  5. Cao, Y.P., Ji, X.Y., Feng, X.Q.: Geometry independence of the normalized relaxation functions of viscoelastic materials in indentation. Philos. Mag. 90, 1639–1655 (2010) CrossRefGoogle Scholar
  6. Cheng, Y.T., Cheng, C. M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R Rep. 44, 91–149 (2004) CrossRefGoogle Scholar
  7. Cheng, Y.T., Yang, F.Q.: Obtaining shear relaxation modulus and creep compliance of linear viscoelastic materials from instrumented indentation using axisymmetric indenters of power-law profiles. J. Mater. Res. 24, 3013–3017 (2009) CrossRefGoogle Scholar
  8. Cheng, Y.T., Ni, W.Y., Cheng, C.M.: Nonlinear analysis of oscillatory indentation in elastic and viscoelastic solids. Phys. Rev. Lett. 97, 075506 (2006) CrossRefGoogle Scholar
  9. Christensen, R.M.: Theory of Viscoelasticity: An Introduction. Academic Press, San Diego (1982) Google Scholar
  10. Ebenstein, D.M., Pruitt, L.A.: Nanoindentation of biological materials. Nano Today 1, 26 (2006) CrossRefGoogle Scholar
  11. Fischer-Cripps, A.C.: Multiple-frequency dynamic nanoindentation testing. J. Mater. Res. 19, 2981–2989 (2004) CrossRefGoogle Scholar
  12. Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1993) Google Scholar
  13. Giannakopoulos, A.E.: Elastic and viscoelastic indentation of flat surfaces by pyramid indentors. J. Mech. Phys. Solids 54, 1305–1332 (2006) MATHCrossRefGoogle Scholar
  14. Graham, G.A.C.: The contact problem in the linear theory of viscoelasticity. Int. J. Eng. Sci. 3, 27–45 (1965) MATHCrossRefGoogle Scholar
  15. Herbert, E.G., Oliver, W.C., Lumsdaine, A., Pharr, G.M.: Measuring the constitutive behavior of viscoelastic solids in the time and frequency domain using flat punch nanoindentation. J. Mater. Res. 24, 626–637 (2009) CrossRefGoogle Scholar
  16. Huang, G., Lu, H.B.: Measurement of Young’s relaxation modulus using nanoindentation. Mech. Time-Depend. Mater. 10, 229–243 (2006) MathSciNetCrossRefGoogle Scholar
  17. Levental, I., Georges, P.C., Janmey, P.A.: Soft biological materials and their impact on cell function. Soft Matter 3, 299–206 (2007) CrossRefGoogle Scholar
  18. Lee, B., Han, L., Frank, E.H., Chubinskaya, S., Ortiz, C., Grodzinsky, A.J.: Dynamic mechanical properties of the tissue-engineered matrix associated with individual chondrocytes. J. Biomech. 43, 469–476 (2010) CrossRefGoogle Scholar
  19. Liu, Y.J., Nishimura, N., Otani, Y.: Large-scale modeling of carbon-nanotube composites by a fast multipole boundary element method. Comput. Mater. Sci. 34, 173–187 (2005) CrossRefGoogle Scholar
  20. Lu, H., Wang, B., Ma, J., Huang, G., Viswanathan, H.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189–207 (2003) CrossRefGoogle Scholar
  21. Ngan, A.H.W., Wang, H.T., Tang, B., Sze, K.Y.: Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation. Int. J. Solids Struct. 42, 1831–1846 (2005) MATHCrossRefGoogle Scholar
  22. Oyen, M.L.: Spherical indentation creep following ramp loading. J. Mater. Res. 20, 2094–2100 (2005) CrossRefGoogle Scholar
  23. Oyen, M.L.: Sensitivity of polymer nanoindentation creep measurements to experimental variables. Acta Mater. 55, 3633 (2007) CrossRefGoogle Scholar
  24. Oyen, M.L., Cook, R.F.J.: Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J. Mater. Res. 18, 139 (2003) CrossRefGoogle Scholar
  25. Ramakrishna, S., Huang, Z.M., Kumar, G.V., Batchelor, A.W., Mayer, J.: An Introduction to Biocomposites. Imperial College Press, London (2004) Google Scholar
  26. Shimizu, S., Yanagimoto, T., Sakai, M.: Pyramidal indentation load-depth curve of viscoelastic materials. J. Mater. Res. 14, 4075–4086 (1999) CrossRefGoogle Scholar
  27. Thomas, V., Dean, D.R., Jose, M.V., Mathew, B., Chowdhury, S., Vohra, Y.K.: Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite. Biomacromolecules 8, 631–637 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B. V. 2011

Authors and Affiliations

  1. 1.Applied Mechanics Lab, Department of Engineering MechanicsTsinghua UniversityBeijingChina

Personalised recommendations