Mechanics of Time-Dependent Materials

, Volume 15, Issue 1, pp 15–28 | Cite as

Time-dependent poisson’s ratio of polypropylene compounds for various strain histories

  • Daniel Tscharnuter
  • Michael Jerabek
  • Zoltan Major
  • Reinhold W. Lang


Due to the viscoelastic behavior of polymers mechanical properties are strongly affected by the loading history. To obtain the time-dependent Poisson’s ratio without further data manipulation, stress relaxation tests have to be carried out. Only few results for viscoelastic materials have been published to date, but the theory of Poisson’s ratio in the framework of linear viscoelasticity has received some attention with respect to loading histories other than relaxation, i.e. creep and constant rate of strain tests.

The main objective of this work is to compare the potential of different testing methods to determine Poisson’s ratio. Transverse and axial strain have been measured in relaxation tests, creep experiments and displacement rate controlled tensile tests. Relaxation tests are evaluated accounting for the finite loading time and the results are compared with those of tensile creep and displacement rate controlled tensile tests. An optimization based method to determine linear viscoelastic material functions developed previously is applied to calculate Poisson’s ratio.


Poisson’s ratio Linear viscoelasticity Lateral contraction Time dependence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arzouminidis, G.A., Liechti, K.M.: Linear viscoelastic property measurement and its significance for some nonlinear viscoelasticity models. Mech. Time-Depend. Mater. 7(3–4), 209–250 (2003) CrossRefGoogle Scholar
  2. Deng, T.H., Knauss, W.G.: The temperature and frequency dependence of the bulk compliance of poly(vinyl acetate). a re-examination. Mech. Time-Depend. Mater. 1, 33–49 (1997) CrossRefGoogle Scholar
  3. Hilton, H.H.: Implications and constraints of time-independent poisson ratios in linear isotropic and anisotropic viscoelasticity. J. Elast. 63(3), 221–251 (2001) MATHCrossRefGoogle Scholar
  4. Jerabek, M., Major, Z., Renner, K., Móczó, J., Pukánszky, B., Lang, R.W.: Filler/matrix-debonding and micro-mechanisms of deformation in particulate filled polypropylene composites under tension. Polymer 51(9), 2040–2048 (2010). doi: 10.1016/j.polymer.2010.02.033 CrossRefGoogle Scholar
  5. Jerabek, M., Tscharnuter, D., Major, Z., Ravi-Chandar, K., Lang, R.W.: Relaxation behavior of neat and particulate filled polypropylene in uniaxial and multiaxial compression. Mech. Time-Depend. Mater. 14(1), 47–68 (2010a) CrossRefGoogle Scholar
  6. Jerabek, M., Major, Z., Lang, R.W.: Strain determination of polymeric materials using digital image correlation. Polym. Test. 29(3), 407–416 (2010b) CrossRefGoogle Scholar
  7. Jerabek, M., Major, Z., Lang, R.W.: Uniaxial compression testing of polymeric materials. Polym. Test. 29(3), 302–309 (2010c) CrossRefGoogle Scholar
  8. Knauss, W.G., Emri, I.J.: Non-linear viscoelasticity based on free-volume considerations. Comput. Struct. 13, 123–128 (1981) MATHCrossRefGoogle Scholar
  9. Knauss, W.G., Zhao, J.: Improved relaxation time coverage in ramp-strain histories. Mech. Time-Depend. Mater. 11(3–4), 199–216 (2007) CrossRefGoogle Scholar
  10. Lu, H., Zhang, X., Knauss, W.G.: Uniaxial, shear and poisson relaxation and their conversion to bulk relaxation: Studies on poly(methyl methacrylate). Polym. Eng. Sci. 37(6), 1053–1063 (1997) CrossRefGoogle Scholar
  11. Ma, Z., Ravi-Chandar, K.: Confined compression: a stable homogeneous deformation for constitutive characterization. Exp. Mech. 40(1), 38–45 (2000) CrossRefGoogle Scholar
  12. O’Brien, D.J., Sottos, N.R., White, S.R.: Cure-dependent viscoelastic poisson’s ratio of epoxy. Exp. Mech. 47(2), 237–249 (2007) CrossRefGoogle Scholar
  13. Qvale, D., Ravi-Chandar, K.: Viscoelastic characterization of polymers under multiaxial compression. Mech. Time-Depend. Mater. 8(3), 193–214 (2004) CrossRefGoogle Scholar
  14. Sane, S.B., Knauss, W.G.: On interconversion of various material functions of pmma. Mech. Time-Depend. Mater. 5, 325–343 (2001) CrossRefGoogle Scholar
  15. Sorvari, J., Malinen, M.: Determination of the relaxation modulus of a linearly viscoelastic material. Mech. Time-Depend. Mater. 10, 125–133 (2006) CrossRefGoogle Scholar
  16. Steinberger, R., Vezer, S., Major, Z., Lang, R.W.: Testing system for the creep characterization of polymers. In: Proceedings of the 2006 Sem Annual Conference and Exposition on Experimental and Applied Mechanics 2006, vol. 4, pp. 1767–1772 (2006) Google Scholar
  17. Tscharnuter, D., Jerabek, M., Major, Z., Lang, R.W.: On the determination of the relaxation modulus of pp compounds including ramp strain loading. Mech. Time-Depend. Mater. (2010, submitted). doi: 10.1007/s11043-010-9119-4
  18. Tschoegl, N.W., Knauss, W., Emri, I.: Poisson’s ratio in linear viscoelasticity—a critical review. Mech. Time-Depend. Mater. 6(1), 3–51 (2002) CrossRefGoogle Scholar
  19. van der Varst, P.G.T., Kortsmit, W.G.: Notes on the lateral contraction of linear isotropic visco-elastic materials. Arch. Appl. Mech. 62(5), 338–346 (1992) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, B. V. 2010

Authors and Affiliations

  • Daniel Tscharnuter
    • 1
  • Michael Jerabek
    • 1
    • 2
  • Zoltan Major
    • 3
    • 4
  • Reinhold W. Lang
    • 3
    • 5
  1. 1.Polymer Competence Center Leoben GmbHLeobenAustria
  2. 2.Borealis Polyolefine GmbHLinzAustria
  3. 3.Institute of Materials Science and Testing of PlasticsLeobenAustria
  4. 4.Institute of Polymer Product EngineeringJohannes Kepler University LinzLinzAustria
  5. 5.Institute of Polymeric Materials and TestingJohannes Kepler University LinzLinzAustria

Personalised recommendations