Mechanics of Time-Dependent Materials

, Volume 12, Issue 1, pp 45–68 | Cite as

Evolution of stress and deformations in high-temperature polymer matrix composites during thermo-oxidative aging

  • K. V. Pochiraju
  • G. P. Tandon
  • G. A. Schoeppner


This paper presents a model-based analysis of thermo-oxidative behavior in high-temperature polymer matrix composite (HTPMC) materials. The thermo-oxidative behavior of the composite differs from that of the constituents as the composite microstructure, the fiber/matrix interphase/interface behavior and damage mechanisms introduce anisotropy in the diffusion and oxidation behavior. Three-dimensional Galerkin finite element methods (GFEM) that model the thermo-oxidative layer growth with time are used together with homogenization techniques to analyze lamina-scale behavior using representative volume elements (RVEs). Thermo-oxidation-induced shrinkage is characterized from dimensional changes observed during aging in inert (argon) and oxidative (air) environments. Temperature-dependent macro-scale (bulk) mechanical testing and nano-indentation techniques are used for characterizing the effect of oxidative aging on modulus evolution. The stress and deformation fields in a single ply unidirectional lamina are studied using coupled oxidation evolution and non-linear elastic deformation analyses. Deformation and stress states are shown as a function of the aging time. While the thermo-oxidative processes are controlled by diffusion phenomenon in neat resin, the onset and propagation of damage determines the oxidative response of an HTPMC.


High-temperature polymer matrix composites Oxidation Shrinkage Oxidation induced stress Damage Anisotropic oxidation Modeling PMR-15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdeljaoued, K.: Thermal oxidation of PMR-15 polymer used as a matrix in composite materials reinforced with carbon fibers. M.S. thesis, Ecole Nationale Superieure des Arts et Metiers, Paris (1999) Google Scholar
  2. Bakhvalov, N., Panasenko, G.: Homogenization: Averaging Processes in Periodic Media, Mathematical Problems in Mechanics of Composite Materials. Kluwer Academic, Dordrecht (1989) Google Scholar
  3. Bowles, K.J.: Thermal and mechanical durability of graphite-fiber-reinforced PMR-15 composites. NASA TM 113116/REV1 (1998) Google Scholar
  4. Bowles, K.J., Meyers, A.: Specimen geometry effects on graphite/PMR-15 composites during thermo-oxidative aging. In: Proceedings 31st International SAMPE Symposium (1986) Google Scholar
  5. Bowles, K.J., Madhukar, M., Papadopolous, D.S., Inghram, L., McCorkle, L.: The effects of fiber surface modification and thermal aging on composite toughness and its measurement. NASA TM-106765 (1995) Google Scholar
  6. Bowles, K.J., Papadopoulos, D.S., Inghram, L.L., McCorkle, L.S., Klan, O.V.: Longtime durability of PMR-15 matrix polymer at 204, 260, 288 and 316°C. NASA/TM-2001-210602 (2001) Google Scholar
  7. Bowles, K.J., Tsuji, L., Kamvouris, J., Roberts, G.D.: Long-term isothermal aging effects on weight loss, compression properties, and dimensions of T650-35 fabric-reinforced PMR-15 composites—Data. NASA TM, 2003-211870 (2003) Google Scholar
  8. Brinson, L.C., Gates, T.S.: Effects of physical aging on long term creep of polymers and polymer matrix composites. Int. J. Solids Struct. 32, 827 (1995) zbMATHCrossRefGoogle Scholar
  9. Colin, X., Verdu, J.: Thermal aging and lifetime prediction for organic matrix composites. Plast. Rubber Compos. 32, 349–356 (2003) CrossRefGoogle Scholar
  10. Colin, X., Verdu, J.: Strategy for studying thermal oxidation of organic matrix composites. Compos. Sci. Technol. 65, 411–419 (2005) CrossRefGoogle Scholar
  11. Colin, X., Marais, C., Verdu, J.: Kinetic modeling and simulation of gravimetric curves: application to the oxidation of bismaleimide and epoxy resins. Polym. Degrad. Stab. 78, 545–553 (2002) CrossRefGoogle Scholar
  12. Colin, X., Mavel, A., Marais, C., Verdu, J.: Interaction between cracking and oxidation in organic matrix composites. J. Compos. Mater. 39, 1371–1389 (2005) CrossRefGoogle Scholar
  13. McKenna, G.B.: Aging of polymeric resins: implications for composite performance. Proc. Conf. Am. Chem. Soc. 33(1), 364 (1992) MathSciNetGoogle Scholar
  14. McManus, H.L., Foch, B.J., Cunningham, R.A.: Mechanism-based modeling of long-term degradation. J. Comput. Technol. Res. 22, 146–152 (2000) Google Scholar
  15. Nam, J.D., Seferis, J.C.: Anisotropic thermo-oxidative stability of carbon fiber reinforced polymeric composites. SAMPE Q. 24, 10–18 (1992) Google Scholar
  16. Nelson, J.B.: Thermal aging of graphite polyimide composites. In: O’Brien, T.K. (ed.) Long-Term Behavior of Composites. ASTM STP, vol. 813, pp. 206–221. American Society for Testing and Materials, Philadelphia (1983) Google Scholar
  17. Oliver, W.C., Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3–20 (2004) CrossRefGoogle Scholar
  18. Paipetis, A., Galiotis, C.: Effect of fiber sizing on stress transfer efficiency in carbon/epoxy model composites. Composites A 27, 755–767 (1996) CrossRefGoogle Scholar
  19. Pochiraju, K.V., Cook, H., Tandon, G.P., Schoeppner, G.A.: Modeling thermo-oxidation in high-temperature polymer matrix composites. In: Proceedings American Society for Composites, 21st Technical Conference, University of Michigan-Dearborn, Dearborn, MI (2006) Google Scholar
  20. Pochiraju, K.V., Tandon, G.P.: Modeling thermo-oxidation layer growth in high temperature resins. J. Eng. Mater. Technol. 128, 107–116 (2006) CrossRefGoogle Scholar
  21. Schoeppner, G.A., Tandon, G.P., Ripberger, E.R.: Anisotropic oxidation and weight loss in PMR-15 composites. Compos. A: Appl. Sci. Manuf. 38, 890–904 (2007) CrossRefGoogle Scholar
  22. Skontorp, A.: Isothermal high-temperature oxidation, aging and creep of carbon-fiber/polyimide composites. Ph.D. Thesis, University of Houston, TX (1995) Google Scholar
  23. Skontorp, A., Wong, M.S., Wang, S.S.: High-temperature anisotropic thermal oxidation of carbon-fiber reinforced polyimide composites. Theory and experiment. In: Proc. of ICCM-10, Whistler B.C., Canada, vol. IV, pp. 375 (1995) Google Scholar
  24. Sullivan, J.L.: Creep and physical aging of composites. Comput. Sci. Technol. 39, 207 (1990) CrossRefGoogle Scholar
  25. Tandon, G.P., Pochiraju, K.V., Schoeppner, G.A.: Modeling of oxidative development in PMR-15 resin. Polym. Degrad. Stab. 91, 1861–1869 (2006) CrossRefGoogle Scholar
  26. Tang, L.Q., Pochiraju, K.V., Chassapis, C., Manoocheri, S.: Three-dimensional transient mold cooling analysis based on galerkin finite element formulation with a matrix-free conjugate gradient technique. Int. J. Numer. Method. Eng. 39, 3049–3064 (1996) zbMATHCrossRefGoogle Scholar
  27. Tsuji, L.C., McManus, H.L., Bowles, K.J.: Mechanical properties of degraded PMR-15 resin. NASA Technical Report, 1998-208487, pp. 1–18 (1998) Google Scholar
  28. Upadhyaya, D., Tsakiropoulos, P.: Evaluation of the effect of sizing levels on transverse flexural and shear strengths of carbon/epoxy composites. J. Mater. Process. Technol. 54, 17–20 (1995) CrossRefGoogle Scholar
  29. Waldron, W.K. Jr., McKenna, G.B.: The nonlinear viscoelastic response and apparent rejuvenation of an epoxy glass. J. Rheol. 39, 471–497 (1995) CrossRefADSGoogle Scholar
  30. Wang, S.S., Chen, X.: Computational micromechanics for high-temperature constitutive equations of polymer-matrix composites with oxidation reaction, damage, and degradation. J. Eng. Mater. Technol. 128, 81–89 (2006) CrossRefGoogle Scholar
  31. Weitsman, Y.: Stress assisted diffusion in elastic and viscoelastic materials. J. Mech. Phys. Solids 35, 73–97 (1987) zbMATHCrossRefGoogle Scholar
  32. Wise, J., Gillen, K.T., Clough, R.L.: Quantitative model for the time development of diffusion-limited oxidation profiles. Polymer 38, 1929–1944 (1997) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • K. V. Pochiraju
    • 1
  • G. P. Tandon
    • 2
  • G. A. Schoeppner
    • 3
  1. 1.Stevens Institute of TechnologyDepartment of Mechanical EngineeringHobokenUSA
  2. 2.University of Dayton Research InstituteDaytonUSA
  3. 3.US Air Force Research LaboratoryAFRL/RXBCWright-Patterson Air Force BaseUSA

Personalised recommendations