Skip to main content

Advertisement

Log in

Stability analysis tool for discrete-time systems in control education

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Computers are widely used for the purpose of education along with the developing technology as in every field. Students can learn and understand theoretical information individually with computer tools such as lectures, animations, solved/unsolved examples, simulations, interactive simulators, online support. In this study, a new software tool has been designed which contains many methods for stability analysis in discrete-time systems and is not available in the literature/application. By using this computer tool, which includes eleven stability analysis methods, related lectures, interactive analysis and application (exercise) simulators; it is aimed that students learn and understand the knowledge in the related field in a simple and easy way on their own.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Benidir M (1996) On the root distribution of general polynomials with respect to the unit circle. Signal Process 53:75–82

    Article  Google Scholar 

  2. Bistritz Y (1983) A stability new test for linear discrete systems in a table form. IEEE Trans on Circuits Syst CAS-30: 917–919

  3. Bistritz Y (1984) Zero location with respect to the unit circle of discrete-time linear system polynomials. Proc IEEE 72:1131–1142

    Article  Google Scholar 

  4. Bistritz Y (1996) Reflections on Schur-Cohn matrices and Jury-Marden tables and classification of related unit circle zero location criteria. Circuits Systems Signal Process 15:111–136

    Article  MathSciNet  Google Scholar 

  5. Čech M, Königsmarková J, Goubej M, Oomen T, Visioli A (2019) Essential challenges in motion control education. IFAC-PapersOnLine 52:200–205. https://doi.org/10.1016/j.ifacol.2019.08.196

    Article  Google Scholar 

  6. Chengbo W, Hui X, Wen S (2019) SPSE - a model of engineering multimedia learning and training. Multimed Tools Appl 78:1149–1164. https://doi.org/10.1007/s11042-018-6520-5

    Article  Google Scholar 

  7. Coma-Tatay I, Casas-Yrurzum S, Casanova-Salas P, Fernández-Marín M (2019) FI-AR learning: a web-based platform for augmented reality educational content. Multimed Tools Appl 78:6093–6118. https://doi.org/10.1007/s11042-018-6395-5

    Article  Google Scholar 

  8. Díaz Redondo RP, Caeiro Rodríguez M, López Escobar J, Fernández Vilas A (2021) Integrating micro-learning content in traditional e-learning platforms. Multimed Tools Appl 80:3121–3151. https://doi.org/10.1007/s11042-020-09523-z

    Article  Google Scholar 

  9. Fadali MS, Visioli A (2013) Digital control engineering, 2nd edn. Academic Press, USA

    Google Scholar 

  10. Google (2022) Google Docs. https://docs.google.com/

  11. Guzman JL, Costa-Castello R, Dormido S, Berenguel M (2016) An interactivity-based methodology to support control education: How to teach and learn using simple interactive tools [Lecture Notes]. IEEE Control Syst Mag 36:63–76. https://doi.org/10.1109/MCS.2015.2495092

    Article  Google Scholar 

  12. Guzmán JL, Piguet Y, Dormido S, Berenguel M, Costa-Castelló R (2018) New interactive books for control education. IFAC-PapersOnLine 51:190–195. https://doi.org/10.1016/j.ifacol.2018.06.064

    Article  Google Scholar 

  13. Heradio R, de la Torre L, Dormido S (2016) Virtual and remote labs in control education: A survey. Annu Rev Control 42:1–10. https://doi.org/10.1016/j.arcontrol.2016.08.001

    Article  Google Scholar 

  14. Hu X (1994) A new stability table for discrete-time systems. Syst Control Lett 22:385–392

    Article  MathSciNet  Google Scholar 

  15. Hwang J, Park S (2016) LIDAB: a user-friendly display system for linked multimedia data and its application in education. Multimed Tools Appl 75:13149–13162. https://doi.org/10.1007/s11042-015-2994-6

    Article  Google Scholar 

  16. Jury EI (1962) A simplified stability criterion for linear discrete systems. Proceedings of the IRE 1493–1500

  17. Jury EI (1964) Theory and Application of the z-transform method. Robert E. Krieger Publishing Co., USA

  18. Juuso EK (2018) An advanced teaching scheme for integrating problem-based learning in control education. Open Engineering 8:41–49. https://doi.org/10.1515/eng-2018-0006

    Article  Google Scholar 

  19. Kim BH, Kim KC, Hong SE, Oh SY (2017) Development of cyber information security education and training system. Multimed Tools Appl 76:6051–6064. https://doi.org/10.1007/s11042-016-3495-y

    Article  Google Scholar 

  20. Kuo BC (1992) Digital control systems. 2nd ed. Oxford University Press

  21. Leva A, Cimino C, Seva S (2020) A control education software suite to bridge methodological and engineering aspects. IFAC-PapersOnLine 53:17179–17184. https://doi.org/10.1016/j.ifacol.2020.12.1728

    Article  Google Scholar 

  22. Levine WS (Ed.) (1999) The Control handbook. CRC Press & IEEE Press

  23. Liénard C (1914) Sur le signe de la partie réelle des racines d’une équation algébrique. Journal de Mathématiques Pures et Appliquées 10:291–346

    Google Scholar 

  24. Marden M (1949) Geometry of the zeros of a polynomial in a complex variable. American Mathematical Society, USA

    Google Scholar 

  25. Marin L, Vargas H, Heradio R, de La Torre L, Diaz JM, Dormido S (2020) Evidence-based control engineering education: Evaluating the LCSD simulation tool. IEEE Access 8:170183–170194. https://doi.org/10.1109/ACCESS.2020.3023910

    Article  Google Scholar 

  26. MathWorks (2020) MATLAB. http://www.mathworks.com/products/matlab/

  27. Matišák J, Rábek M, Žáková K (2020) Online control education using 3D holographic visualisation. Journal of Automation, Mobile Robotics and Intelligent Systems 14: 42–47. https://doi.org/10.14313/JAMRIS/3-2020/32

  28. Muñoz de la Peña D, Domínguez M, Gomez-Estern F, Reinoso O, Torres F, Dormido S (2022) Overview and future trends of control education. IFAC-PapersOnLine 55:79–84. https://doi.org/10.1016/j.ifacol.2022.09.228

    Article  Google Scholar 

  29. Nan R, Zhang H (2019) Multimedia learning platform development and implementation based on cloud environment. Multimed Tools Appl 78:35651–35664. https://doi.org/10.1007/s11042-019-08187-8

    Article  Google Scholar 

  30. Neogi B, Roy A, Mukherjee S, Ghosal S, Ghosh S, Chatterjee A, Datta S, Das A, Tibrewla DN (2010) Simulator generation of Jury’s stability test in z-domain. International J of Engg Research & Indu Appls (IJERIA) 3:411–421

    Google Scholar 

  31. Ogata K (1995) Discrete-time control systems, 2nd edn. Prentice Hall, USA

    Google Scholar 

  32. Pittarello F, Pellegrini T (2017) HCI and education: a blended design experience. Multimed Tools Appl 76:4895–4923. https://doi.org/10.1007/s11042-016-3782-7

    Article  Google Scholar 

  33. Raible RH (1974) A simplification of Jury's tabular form. IEEE Trans Automat Contr 248–250

  34. Riera B, Vigário B (2017) HOME I/O and FACTORY I/O: a virtual house and a virtual plant for control education. IFAC-PapersOnLine 50:9144–9149. https://doi.org/10.1016/j.ifacol.2017.08.1719

    Article  Google Scholar 

  35. Rossiter JA, Dormido S, Vlacic L, Jones BL, Murray RM (2014) Opportunities and good practice in control education. IFAC Proceedings Volumes 47:10568–10573. https://doi.org/10.3182/20140824-6-ZA-1003.00264

    Article  Google Scholar 

  36. Rossiter JA, Pasik-Duncan B, Dormido S, Vlacic L, Jones B, Murray R (2018) A survey of good practice in control education. Eur J Eng Educ 43:801–823. https://doi.org/10.1080/03043797.2018.1428530

    Article  Google Scholar 

  37. Sobota J, Goubej M, Königsmarková J, Čech M (2019) Raspberry Pi-based HIL simulators for control education. IFAC-PapersOnLine 52:68–73. https://doi.org/10.1016/j.ifacol.2019.08.126

    Article  Google Scholar 

  38. Stanisavljevic Z, Nikolic B, Tartalja I, Milutinovic V (2015) A classification of eLearning tools based on the applied multimedia. Multimed Tools Appl 74:3843–3880. https://doi.org/10.1007/s11042-013-1802-4

    Article  Google Scholar 

  39. Sui T, Liu X, Lu D, Shao C, Cheng F (2019) Research on the construction of teaching case library of the computer simulation technology. Multimed Tools Appl 78:1183–1199. https://doi.org/10.1007/s11042-018-6646-5

    Article  Google Scholar 

  40. Vámos T, Keviczky L, Bars R, Benedek A, Sik D (2018) An introductory overview about systems and control a motivation lecture in control education. 2018 26th Mediterranean Conference on Control and Automation (MED) pp. 1–6. https://doi.org/10.1109/MED.2018.8442604

  41. Vatansever F, Hatun M (2019) The design of educational tool for Jury's stability test. Academic Perspective Procedia 2: 476–782. https://doi.org/10.33793/acperpro.02.03.37

  42. Vatansever F, Hatun M (2019) The system stability software tool based on Routh-Hurwitz criterion. Uludağ University Journal of The Faculty of Engineering 24: 229–238. https://doi.org/10.17482/uumfd.545361

  43. Vatansever F, Yalcin NA (2017) e-Signals&Systems: A web-based educational tool for signals and systems. Comput Appl Eng Educ 25:625–641. https://doi.org/10.1002/cae.21826

    Article  Google Scholar 

  44. Wahid MDS, Eydgahi AM (1991) Computer simulation for teaching system stability concepts. Int J Appl Engng Ed 7:392–397

    Google Scholar 

  45. Zhang Z, Li Z, Han M, Su Z, Li W (2021) An augmented reality-based multimedia environment for experimental education. Multimed Tools Appl 80:575–590. https://doi.org/10.1007/s11042-020-09684-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahri Vatansever.

Ethics declarations

Conflict of interest

The authors have no relevant financial interests in the manuscript and no other potential.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vatansever, F., Hatun, M. Stability analysis tool for discrete-time systems in control education. Multimed Tools Appl 83, 6205–6226 (2024). https://doi.org/10.1007/s11042-023-15338-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15338-5

Keywords

Navigation