Abstract
The bioinformatics data processing plays a vital role in low power biomedical devices. The functional domain of processing biological data is collection, execution, conversion, storing and distribution. So, there is an effective multiple objective real time task scheduling technique are required to provide better solution in this domain. This paper describes novel AI based multi-objective evolutionary algorithmic techniques such as multi-objective genetic algorithm (MOGA), non-dominated sorting genetic algorithm (NSGA) and multi-objective messy genetic algorithm (MOMGA) for scheduling real time tasks to a multicore processor-based low power biomedical device used for health care application. These techniques improve the performance upon earlier reported system by considering multiple objectives such as, low power consumption (P), maximizing core utilization (U) and minimizing deadline miss-rate (δ). The novelty of this work is to achieve the schedulability of realtime tasks by computing the converging value of a series of task parameters such as execution time, release time, workload and arrival time. Finally, we investigated the performance parameters such as power consumption (P), deadline miss-rate (\(\updelta\)), and core utilization for the given architecture. The evaluation results show that the power consumption is reduced to about 5–8%, utilization of the core is increased about 10% to 40% and deadline miss-rate is comparatively minimized with conventional realtime scheduling approaches.
This is a preview of subscription content, access via your institution.





References
Balakrishnan A, Naeemi A (2011) Interconnect network analysis of many-core chips. IEEE Trans Electron Devices 58(9):2831–2837. https://doi.org/10.1109/ted.2011.2158104
Barros CA, Silveira LFQ, Valderrama CA, Xavier-de-Souza S (2015) Optimal processor dynamic-power reduction for parallel workloads on heterogeneous multi-core architectures. J Microprocess Microsyst 39:418–425. https://doi.org/10.1016/j.micpro.2015.05.009
Buttazzo G (2011) Hard real-time computing systems. Real-time systems series. Springer, Boston. https://doi.org/10.1007/978-1-4614-0676-1
Deb k (2011) Multi-objective optimization using evolutionary algorithms: an introduction. Indian Institute of Technology Kanpur, KanGAL. 2011003. http://www.iitk.ac.in/kangal/deb.html
Fonseca CM, Fleming PJ (1993) Genetic algorithms for multi-objective optimization: formulation, discussion and generalization. genetic algorithms. In: Forrest S (ed) Proceedings of the Fifth International Conference. Morgan Kaufmann, San Mateo, pp 12–20
Gálvez S, Díaz D, Hernández P, Esteban FJ, Caballero JA, Dorado G (2010) Next-generation bioinformatics: using many-core processor architecture to develop a web service for sequence alignment. J Bioinform 26(5):683–686. https://doi.org/10.1093/bioinformatics/btq017
He D, Mueller W (2013) Heuristic power-aware approach for hard real-time systems on multi-core platforms. J Microprocess Microsyst 37(8):858–870. https://doi.org/10.1016/j.micpro.2013.04.007
Langmead B, Trapnell C, Pop M, Salzberg S (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. J Genome Biol 10(3):R25–R10. https://doi.org/10.1186/gb-2009-10-3-r25
Merelli I (2019) Parallel architectures for bioinformatics. J Ref Module Life Sci 1:209–214. https://doi.org/10.1016/B978-0-12-809633-8.20369-5
Nebro AJ, Durillo JJ, Luna F, Dorronsoro B, Alba E (2016) A cellular genetic algorithm for multi-objective optimization. Int J Intell Syst 24(7):726–746. https://doi.org/10.1002/int.20358
Obukhova K, Zhuravska I, Burenko V (2020) Diagnostics of power consumption of a mobile device multi-core processor with detail of each core utilization. In: 2020 IEEE 15th International Conference on Advanced Trends in Radio electronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, 2020, pp 368–372. https://doi.org/10.1109/TCSET49122.2020.235456
Ocaña KACS, Galheigo M, Osthoff C, Gadelha LMR, Porto F, Gomes ATA, deOliveira D, Vasconcelos AT (2020) BioinfoPortal: a scientific gateway for integrating bioinformatics applications on the Brazilian national high-performance computing network. J. Future Gen Comput Syst 107:192–214. https://doi.org/10.1016/j.future.2020.01.030
Ponnan S, Saravanakumar U, Iwendi C, Mohan S, Srivastav G (2020) Field-programmable gate arrays with low power vision system using dynamic switching. Comput Electr Eng 90:6996
Prabhaker MLC, Saravana Ram R (2020) Real-time task schedulers for a high-performance multi-core system. Aut. Control Comp Sci. 54:291–301. https://doi.org/10.3103/S0146411620040094
Revathi M, Suresh P, Chinmay C, Saravanakumar U (2021) Improved performance on seizure detection in an automated electroencephalogram signal under evolution by extracting entropy feature. Springer, New York
Kalidass J, Purusothaman T, Suresh P (2021) Enhancement of end-to-end security in advanced metering infrastructure, Journal of Ambient Intelligence and Humanized Computing, 2021. pp.1 - 14. https://doi.org/10.1007/s12652-021-03409-0
Sahu SN, Panda J, Sahu R, Sahoo T, Chakrabarty S, Pattanayak SK (2020) Healthcare information technology for rural healthcare development: insight into bioinformatics techniques. In: Dey N, Mahalle P, Shafi P, Kimabahune V, Hassanien A (eds) Internet of Things, smart computing and technology: a roadmap ahead studies in systems, decision and control, vol 266. Springer, Cham. https://doi.org/10.1007/978-3-030-39047-1_7
Saravana Ram R, Prabhaker MLC, Suresh K, Subramaniam K, Venkatesan M (2020) Dynamic partial reconfiguration enchanced with security system for reduced area and low power consumption. J Microprocess Microsyst. https://doi.org/10.1016/j.micpro.2020.103088
Seo E, Jeong J, Park S, Lee J (2008) Power efficient scheduling of real-time tasks on Multicore processors. IEEE Trans Parall Distrib Syst 19(11):1540–1552. https://doi.org/10.1109/tpds.2011.87
Suresh P, Saravanan AK, Iwendi C, Ibeke E, Srivastava G (2021) An artificial intelligence-based quorum system for the improvement of the lifespan of sensor networks. IEEE Sens J. 21:17373–17385
Weise T (eds) (2008) Global optimization algorithms theory and application. http://www.it-weise.de/
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Prabhaker, M.L.C., Ponnan, S. AI based realtime task schedulers for multicore processor based low power biomedical devices for health care application. Multimed Tools Appl 81, 42079–42095 (2022). https://doi.org/10.1007/s11042-021-11651-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-021-11651-z
Keywords
- Bioinformatics
- Low power biomedical devices
- Multicore architecture
- Multi-objective evolutionary algorithms
- AI realtime task schedulers