Image encryption algorithm based on dynamic DNA coding operations and 3D chaotic systems

Abstract

This paper presents a new image encryption algorithm based on 3D chaotic system and deoxyribonucleic acid (DNA) coding. It uses two keys, an external one of 128 bits long and an internal one of 64 gray values coming from the plain image. The initial conditions come from the two keys and vary from one line of the image to the other and from one image to the other and consequently the sequences of substitutions too. In general, in image encryption based on 3D chaotic systems, each chaotic variable is used independently of the others in one phase of the encryption. Here we use the zigzag process to combine the sequences from all the variables before using them simultaneously in the encryption process. DNA coding generally uses one of the 24 DNA rules and one of the 16 join operations to perform the encryption. Here we use all the 24 rules dynamically as well as the 16 join operations in the encryption. Also we apply the chaotic permutation on DNA chain. The logical DNA operations are used according to an algorithm similar to that of the Fast Walsh Transform (FWT) in those 24 DNA rules. The algorithm has been evaluated. It has good statistical properties of cipher images. The proposed system presents high sensitivity on the encryption-decryption keys and on the plain images. These latter features make the proposed algorithm very efficient, robust and resistant against brute force attacks and good for the future secure image communication.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Abdelfattah RI, Mohamed H, Nasr ME (2020) Secure image encryption scheme based on DNA and new multi chaotic map. J Phys Conf Ser 1447(1): 012053. IOP Publishing.

  2. 2.

    Al-Maadeed TA, Hussain I, Anees A, Mustafa MT. (2020) An image encryption algorithm based on chaotic Lorenz system and novel primitive polynomial S-boxes. arXiv preprint arXiv:2006.11847

  3. 3.

    Babaei M (2013) A novel text and image encryption method based on chaos theory and DNA computing. Nat Comput 12:101–107

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Chai X, Yang K, Gan Z (2016) A new chaos-based image encryption algorithm with dynamic key selection mechanisms. Multimed Tools Appl 75(8)

  5. 5.

    Chai X-L, Gan Z-H, Lu Y, Zhang M-H, Chen Y-R (2016) A novel color image encryption algorithm based on genetic recombination and the four-dimensional memristive hyperchaotic system. Chin Phys B 25(10):100503

    Article  Google Scholar 

  6. 6.

    Chai X, Chen Y, Broyde L (2017) A novel chaos-based image encryption algorithm using DNA sequence operations. Opt Lasers Eng 88:197–213

    Article  Google Scholar 

  7. 7.

    Chai X, Gan Z, Yang K, Chen Y, Liu X (2017) An image encryption algorithm based on the memristive hyperchaotic system, cellular automata and DNA sequence operations. Signal Process Image Commun 52:6–19

    Article  Google Scholar 

  8. 8.

    Chai X, Fu X, Gan Z, Lu Y, Chen Y (2018) A color image cryptosystem based on dynamic DNA encryption and chaos. Signal Process 155:44–62. https://doi.org/10.1016/j.sigpro.2018.09.029

    Article  Google Scholar 

  9. 9.

    Chen G, Mao Y, Chui CK (2004) A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos, Solitons Fractals 21(3):749–761

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Faheem ZB, Ali A, Khan MA et al (2020) Highly dispersive substitution box (S-box) design using chaos. ETRI J 42:619–632. https://doi.org/10.4218/etrij.2019-0138

    Article  Google Scholar 

  11. 11.

    Farah MAB, Farah A, Farah T (2020) An image encryption scheme based on a new hybrid chaotic map and optimized substitution box. Nonlinear Dyn 99:3041–3064. https://doi.org/10.1007/s11071-019-05413-8

    Article  Google Scholar 

  12. 12.

    Fouda JS, Effa JY, Sabat S, Ali M (2014) A fast chaotic block cipher for image encryption. Commun Nonlinear Sci Numer Simul 19(3):578–588

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Gao T, Chen Z (2008) A new image encryption algorithm based on hyper-chaos. Phys Lett A 372:394–400

    MATH  Article  Google Scholar 

  14. 14.

    Guesmi R, Farah MAB, Kachouri A, Samet M (2015) Chaos-based designing of a highly nonlinear S-box using Boolean functions. 2015 IEEE 12th International Multi-Conference on Systems, Signals & Devices (SSD15), Mahdia, pp. 1–5. https://doi.org/10.1109/SSD.2015.7348106

  15. 15.

    Guesmi R, Farah M, Kachouri A, Samet M (2015) A novel chaos-based image encryption using DNA sequence operation and secure hash algorithm SHA-2. Nonlinear Dyn 83(3):1–14

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Guesmi R, Farah MAB, Kachouri A, Samet M (2016) A novel chaos-based image encryption using DNA sequence operation and secure hash algorithm SHA-2. Nonlinear Dyn 83:1123–1136

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Hamza R, Yan Z, Muhammad K, Bellavista P, Titouna F (2019) A privacy-preserving cryptosystem for IoT E healthcare. Inf Sci 527:493–510. https://doi.org/10.1016/j.ins.2019.01.070

    MathSciNet  Article  Google Scholar 

  18. 18.

    Hamza R, Hassan A, Huang T et al (2019) An efficient cryptosystem for video surveillance in the internet of things environment. Complexity 2019:Article ID 1625678, 11 pages. https://doi.org/10.1155/2019/1625678

    Article  Google Scholar 

  19. 19.

    Hu T, Liu Y, Gong L-H, Ouyang C-J (2017) An image encryption scheme combining chaos with cycle operation for DNA sequences. Nonlinear Dyn 87(1):51–66

    Article  Google Scholar 

  20. 20.

    Huang X, Ye G (2014) An image encryption algorithm based on hyper-chaos and DNA sequence. Multimed Tools Appl 72:57–70

    Article  Google Scholar 

  21. 21.

    Hussain I, Shah T, Gondal MA (2013) Application of S-box and chaotic map for image encryption. Math Comput Model 57(9–10):2576–2579

    MATH  Article  Google Scholar 

  22. 22.

    Telem ANK, Segning CM, Kenne G, Fotsin HB (2014) A simple and robust gray image encryption scheme using chaotic logistic map and artificial neural network. Advances in Multimedia, 2014

  23. 23.

    Khade PN, Manish N (2012) 3D Chaotic functions for image encryption. IJCSI 9(3):1 ISSN:1694–0814

    Google Scholar 

  24. 24.

    Lian SG (2008) Multimedia content encryption: techniques and applications. Auerbach Publication Taylor & Francis Group, Boca Raton

    Google Scholar 

  25. 25.

    Lima JB, Madeiro F, Sales FJR (2015) Encryption of medical images based on cosine number transform. Signal Process Image Commun 35:1–8

    Article  Google Scholar 

  26. 26.

    Liu L, Miao S (2016) A new image encryption algorithm based on logistic chaotic map with varying parameter. Springer Plus 5:289

    Article  Google Scholar 

  27. 27.

    Liu L, Zhang Q, Wei X (2012) A RGB image encryption algorithm based on DNA encoding and chaos map. Comput Electr Eng 38(5):1240–1248

    Article  Google Scholar 

  28. 28.

    Liu Y, Tong XJ, Ma J (2015) Image encryption algorithm based on hyperchaotic system and dynamic S-box. Multimed Tools Appl 75:7739–7759. https://doi.org/10.1007/s11042-015-2691-5

    Article  Google Scholar 

  29. 29.

    Liu L, Xiao S, Zhang L, Bi M, Zhang Y, Fang J, Hu W (2017) Digital chaos-masked optical encryption scheme enhanced by two-dimensional key space. Opt Commun 398:62–66

    Article  Google Scholar 

  30. 30.

    Niu Y, Zhou Z, Zhang X (2020) An image encryption approach based on chaotic maps and genetic operations. Multimedia Tools and Applications, 79(35), 25613–25633

  31. 31.

    Nkapkop JDD, Effa JY, Fouda JSAE, Alidou M, Laurent B, Monica B (2014) A fast image encryption algorithm based on chaotic maps and the linear diophantine equation. Computer Sci Appl 1:232–243

    Google Scholar 

  32. 32.

    Pan H, Lei Y, Jian C (2018) Research on digital image encryption algorithm based on double logistic chaotic map. EURASIP J Image Video Process 2018:142

    Article  Google Scholar 

  33. 33.

    Pareek NK, Patidar V, Sud KK (2013) Diffusion-substitution based gray image encryption scheme. Digit Signal Process 23(3):894–901

    MathSciNet  Article  Google Scholar 

  34. 34.

    Patidar V, Pareek N, Purohit G, Sud K (2010) Modified substitution–diffusion image cipher using chaotic standard and logistic maps. Commun Nonlinear Sci Numer Simul 15(10):2755–2765

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Pisarchik AN, Zanin M (2008) Image encryption with chaotically coupled chaotic maps. Phys D Nonlinear Phenom 237(20):2638–2648

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Shafique A, Shahid J (2018) Novel image encryption cryptosystem based on binary bit planes extraction and multiple chaotic maps. Eur Phys J Plus 133:331

    Article  Google Scholar 

  37. 37.

    Tsafack N, Kengne J, Abd-El-Atty B, Iliyasu AM, Hirota K, Abd El-Latif AA (2020) Design and implementation of a simple dynamical 4-D chaotic circuit with applications in image encryption. Inf Sci 515:191–217

    Article  Google Scholar 

  38. 38.

    Vaidyanathan S, Akgul A, Kaçar S, Çavuşoğlu U (2018) A new 4-D chaotic hyperjerk system, its synchronization, circuit design and applications in RNG, image encryption and chaos-based steganography. Eur Phys J Plus 133:46

    Article  Google Scholar 

  39. 39.

    Volos C, Akgul A, Pham VT, Stouboulos I, Kyprianidis I (2017) A simple chaotic circuit with a hyperbolic sine function and its use in a sound encryption scheme. Nonlinear Dyn. https://doi.org/10.1007/s11071-017-3499-9

  40. 40.

    Wan Y, Gu S, Du B (2020) A new image encryption algorithm based on composite Chaos and Hyperchaos combined with DNA coding. Entropy 22(2):171

    MathSciNet  Article  Google Scholar 

  41. 41.

    Wang Y, Wong K, Liao X, Xiang T, Chen G (2009) A chaos based image encryption Algorithm with variable control parameters. Chaos, Solitons Fractals 41:1773–1783

    MATH  Article  Google Scholar 

  42. 42.

    Wang XY, Yang L, Liu R, Kadir A (2010) A chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn 62:615–621

    MATH  Article  Google Scholar 

  43. 43.

    Wang KF, Zhuang S, Zhao XR (2015) JPEG image encryption algorithm based on three-dimensional multi-chaotic system. Appl Mech Mater 734:554–557

    Article  Google Scholar 

  44. 44.

    Wang XY, Zhang YQ, Bao XM (2015) A novel chaotic image encryption scheme using DNA sequence operations. Opt Lasers Eng 73:53–61

    Article  Google Scholar 

  45. 45.

    Xiuli C, Zhihua G, Ke Y et al (2017) An image encryption scheme based on three-dimensional Brownian motion and chaotic system. Chin Phys B 26(2):99–113

    Google Scholar 

  46. 46.

    Yu-Zhen LI, Jin X, Zhao G et al (2016) Color image encryption scheme based on zigzag transformation and chaotic map. Comput Eng Des 37:2001–2006

    Google Scholar 

  47. 47.

    Zhang Y (2018) The image encryption algorithm based on chaos and DNA computing. Multimed Tools Appl 75(11):6303–6319

    Google Scholar 

  48. 48.

    Zhang Q, Liu L (2013) DNA coding and chaos-based image encryption algorithm. J Comput Theor Nanosci 10(2):341–346

    Article  Google Scholar 

  49. 49.

    Zhang Q, Wei X (2013) A novel couple images encryption algorithm based on DNA subsequence operation and chaotic system. Optik 124(23):6276–6281

    Article  Google Scholar 

  50. 50.

    Zhang YS, Xiao D (2014) On the security of symmetric ciphers based on DNA coding. Inf Sci 28:254–261

    MATH  Article  Google Scholar 

  51. 51.

    Zhang Q, Guo L, Wei X (2010) Image encryption using DNA addition combining with chaotic maps. Math Comput Model 52(11–12):2028–2035

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Zhang Q, Guo L, Wei X (2013) A novel image fusion encryption algorithm based on DNA sequence operation and hyper-chaotic system. Optik 124(18):3596–3600

    Article  Google Scholar 

  53. 53.

    Zhang J, Fang DX, Ren H (2014) Image encryption algorithm based on DNA encoding and chaotic maps. Math Probl Eng 2014:Article ID 917147, 10 pages

    Google Scholar 

  54. 54.

    Zhang YQ, Wang XY, Liu J, Chi ZL (2016) An image encryption scheme based on the MLNCML system using DNA sequences. Opt Lasers Eng 82:95–103

    Article  Google Scholar 

  55. 55.

    Zhang J, Hou D, Ren H (2016, 2016) Image encryption algorithm based on dynamic DNA coding and Chen’s hyperchaotic system. Math Probl Eng:Article ID 6408741, 11 pages

  56. 56.

    Zhang X, Han F, Niu Y (2017, 2017) Chaotic image encryption algorithm based on bit permutation and dynamic DNA encoding. Comput Intell Neurosci:Article ID 6919675, 11 pages

  57. 57.

    Zhao M, Tong X (2010) A multiple chaotic encryption scheme for image. In 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM) (pp. 1-4). IEEE

  58. 58.

    Zhen P, Zhao G, Min L, Jin X (2016) Chaos-based image encryption scheme combining DNA coding and entropy. Multimed Tools Appl 75(11):6303–6319

    Article  Google Scholar 

  59. 59.

    Zhu CX (2012) A novel image encryption scheme based on improved hyperchaotic sequences. Opt Commun 285:29–37

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adélaïde Nicole Kengnou Telem.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kengnou Telem, A.N., Fotsin, H.B. & Kengne, J. Image encryption algorithm based on dynamic DNA coding operations and 3D chaotic systems. Multimed Tools Appl (2021). https://doi.org/10.1007/s11042-021-10549-0

Download citation

Keywords

  • DNA coding
  • 3D chaotic system
  • Zigzag process
  • Chaotic DNA permutation
  • FWT DNA algorithm