Hybrid local phase quantization and grey wolf optimization based SVM for finger vein recognition

Abstract

As a novelist and the most secure biometric method, finger vein recognition has gained substantial significance and various pertinent researches have been reported in literature. However, it is difficult to extract a more reliable and accurate finger vein pattern due to the random noise, poor lighting, illumination variation, image deformation and blur. Furthermore, improper parameter settings of SVMs lead to poor classification accuracy and apparently, not much relevant research has been conducted on its optimal parameter setting. To alleviate these problems, this paper proposes an efficient finger vein recognition framework consisting of the hybrid Local Phase Quantization (LPQ) for robust feature extraction and Grey Wolf Optimization based SVM (GWO-SVM) to compute the best parameter combination of SVM for optimal results of binary classification. Finger vein features are first extracted by integrating LPQ, which is invariant to motion blur and deformation, with Local Directional Pattern (LDP), which is robust to random noise and illumination variation, to augment the recognition performance and reduce the computational time. Then, GWO-SVM is used for classification in order to maximize the classification accuracy by determining the optimal SVM parameters. The extensive experimental results indicate remarkable performance and significant enhancements in terms of recognition accuracy by the proposed framework compared to the existing techniques and prove the effectiveness of the proposed framework on four tested finger vein datasets. It has outperformed the typical SVM approach and kNCN-SRC two-stage methodology via achieving the recognition accuracy of 98% and equal error rate as low as 0.1020%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41

References

  1. 1.

    Akintoye KA, Rahim MSM, Abdullah AH (Feb. 2018) Challenges of finger vein recognition system: a theoretical perspective. International Journal of Emerging Technology and Advanced Engineering 8(2):196–204

    Google Scholar 

  2. 2.

    Asaari MSM, Suandi SA, Rosdi BA (Jun. 2014) Fusion of band limited phase only correlation and width centroid contour distance for finger based biometrics. Expert Syst Appl 41(7):3367–3382

    Article  Google Scholar 

  3. 3.

    Cao K, Jain AK (2018) Automated latent fingerprint recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence

  4. 4.

    Cardoso N, et al (2014) Finger vein recognition using gabor filter and support vector machine. IEEE IPAS’14: International Image Processing Applications AND Systems Conference

  5. 5.

    Changlong H, Zuojin L, Liukui C, Peng J (2017) Identification of finger vein using neural network recognition research based on PCA. IEEE 16th International Conference on Cognitive Informatics & Cognitive Computing:456–460

  6. 6.

    Chen Q, Yang L, Yang G, Yin Y, Meng X (2017) DFVR- deformable finger vein recognition. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

  7. 7.

    Chiu C, Liu T, Lu W, Chen W, Chou J (Oct. 2018) A micro-control capture images technology for the finger vein recognition based on adaptive image segmentation. Microsystem Technologies, Springer 24(10):4165–4178

    Article  Google Scholar 

  8. 8.

    Chowdhury M, Islam R, Gao J (2018) Fast and robust biometric authentication scheme using human ear. Springer, International Conference on Security and Privacy in Communication Systems

    Google Scholar 

  9. 9.

    Das R, Piciucco E, Maiorana E, Campisi P (2018) Convolutional neural network for finger-vein-based biometric identification. IEEE Transactions on Information Forensics and Security 14(2):360–373

    Article  Google Scholar 

  10. 10.

    Dev R, Khanam R (2017) Review on finger vein feature extraction methods. IEEE International Conference on Computing, Communication and Automation (ICCCA, pp 1209–1213

  11. 11.

    Fister I, Yang X, Brest J (2013) A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation 13:34–46

    Article  Google Scholar 

  12. 12.

    Giri KJ, Bushir R (2017) Digital watermarking: a potential solution for multimedia authentication. Intelligent Techniques in Signal Processing for Multimedia Security. Studies in Computational Intelligence 660. Springer

  13. 13.

    Gull S, Loan NA, Parah SA (2018) An efficient watermarking technique for tamper detection and localization of medical images. Journal of Ambient Intelligence and Humanized Computing

  14. 14.

    Gupta P, Gupta P (Mar. 2015) An accurate finger vein-based verification system. Digit Signal Process 38:43–52

    Article  Google Scholar 

  15. 15.

    Gupta S, Singh L (2017) A study on new biometric approaches. IEEE International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN):306–310

  16. 16.

    Hashimoto J (Jun. 2006) Finger vein authentication technology and its future. in Proc Symp. VLSI Circuits, Honolulu, HI, USA, pp 5–8

    Google Scholar 

  17. 17.

    Hsia C (2018) New verification strategy for finger-vein recognition system. IEEE Sensors J 18(2):790–797

    Article  Google Scholar 

  18. 18.

    Hu R, Zhu X, Zhu Y, Gan J (1945-1968) Robust SVM with adaptive graph learning. World Wide Web 23:2020–1968. https://doi.org/10.1007/s11280-019-00766-x

    Article  Google Scholar 

  19. 19.

    Hurrah NN, Parah SA (May 2019) Dual watermarking framework for privacy protection and content authentication of multimedia. Futur Gener Comput Syst 94:654–673

    Article  Google Scholar 

  20. 20.

    Islam M, Roy A, Laskar RH (2020) SVM-based robust image watermarking technique in LWT domain using different sub-bands. Neural Comput & Applic 32:1379–1403

    Article  Google Scholar 

  21. 21.

    Jabid T, Kabir MH, Chae OS (2010) Local directional pattern (LDP) for face recognition. IEEE International Conference on Consumer Electronics, January

    Google Scholar 

  22. 22.

    Jadhav M, RavaleNerkar PM (June 2015) Survey on finger vein biometric authentication system. IJCA Proceedings on National Conference on Emerging Trends in Advanced Communication Technologies NCETACT (3):14–17

  23. 23.

    Kalaimathi P (2016) Extraction and authentication of biometric finger vein using gradient boosted feature algorithm. International Conference on Communication and Signal Processing:723–726

  24. 24.

    Khellat-kihel S, Abrishambaf R, Cardoso N, Monteiro J, Benyettou M (2014) Finger vein recognition using Gabor filter and support vector machine. IEEE International Conference on Image Processing Applications and Systems

  25. 25.

    Kumar A, Zhou Y (Apr. 2012) Human identification using finger images. IEEE Trans Image Process 21(4):2228–2244

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Li J, Hu Y, Zhang Y, Zhao Z (2017) Finger-vein recognition based on improved Zernike moment. Chinese Automation Congress (CAC), IEEE

    Google Scholar 

  27. 27.

    Liu W, Li1 W, Sun L, Zhang L, Chen P (2017) Finger vein recognition based on deep learning. IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 205–210.

  28. 28.

    Liu C, Kim Y (2016) An efficient finger-vein extraction algorithm based on random forest regression with efficient local binary patterns. IEEE International Conference on Image Processing (ICIP)

  29. 29.

    Liu H, Yang G, Yang L, Yin Y (2019) Learning personalized binary codes for finger vein recognition. Neurocomputing 365:62–70

    Article  Google Scholar 

  30. 30.

    Lu Y (2018) Pyramid histogram of double competitive pattern for finger vein recognition. IEEE Access 6:56445–56456

    Article  Google Scholar 

  31. 31.

    Meng X, Xi X, Yang G, Yin Y (2017) Finger vein recognition based on deformation information. Springer, Science China Information Sciences

    Google Scholar 

  32. 32.

    Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Soft 69:46–61

    Article  Google Scholar 

  33. 33.

    Miura N, Nagasaka A, Miyatake T (2007) Extraction of finger-vein patterns using maximum curvature points in image profiles. IAPR Conference on Machine Vision Applications E90-D(8):1185–1194

    Google Scholar 

  34. 34.

    Ojansivu V, Heikkilä J (2008) Blur insensitive texture classification using local phase quantization. Image and Signal Processing:236–243

  35. 35.

    Ortiz N, Hernández RD, Jimenez R, Mauledeoux M, Avilés O (2018) Survey of biometric pattern recognition via machine learning techniques. Contemporary Engineering Sciences 11(34):1677–1694

    Article  Google Scholar 

  36. 36.

    Piciucco E, Maiorana E, Campisi P (2018) Palm vein recognition using a high dynamic range approach. IET Biometrics 7(5):439–446

    Article  Google Scholar 

  37. 37.

    Rawate KR (2017) Human identification using IRIS recognition. IJSRSET 3, No (2):578–584

    Google Scholar 

  38. 38.

    Rosdi BA, Jaafar H, Ramli DA (2015) Finger vein identification using fuzzy-based k-nearest centroid neighbor classifier, 2nd ISM International Statistical Conference, pp. 649–654

  39. 39.

    Ross AA, Nandakumar K, Jain AK (2006) Handbook of multibiometrics, 1st edn. Springer-Verlag, Berlin, Germany

    Google Scholar 

  40. 40.

    Saadat F (2016) A GSA-based method in human identification using finger vein patterns. IEEE 1st Conference on Swarm Intelligence and Evolutionary Computation (CSIEC)

  41. 41.

    Sabhanayagam T (2018) A comprehensive survey on various biometric systems. Int J Appl Eng Res 13(5):2276–2297

    Google Scholar 

  42. 42.

    Shaheed K, Liu H, Yang G, Qureshi I, Gou J, Yin Y (2018) A systematic review of finger vein recognition techniques. Information 9:213

    Article  Google Scholar 

  43. 43.

    Shazeeda, Rosdi BA (2016) Finger vein identification based on the fusion of nearest neighbor and sparse representation based classifiers. Indian J Sci Technol 9(48)

  44. 44.

    Shazeeda S, Rosdi BA (2018) Finger vein recognition using mutual sparse representation classification. IET Biometrics:1–11

  45. 45.

    Shazeeda B, Rosdi A (2018) Nearest centroid neighbor based sparse representation classification for finger vein recognition. IEEE Access 7:5874–5885

    Article  Google Scholar 

  46. 46.

    Sujani G, Reddy S (2017) A hierarchical finger selection method for finger vein recognition using SIFT. IEEE International Conference on Smart Technologies for Smart Nation

  47. 47.

    Syarif MA, Ong TS, Teoh ABJ, Tee C (2016) Enhanced maximum curvature descriptors for finger vein verification. Multimed Tools Appl 76(5):6859–6887

    Article  Google Scholar 

  48. 48.

    Szymkowski M, Saeed K (2018) Finger veins feature extraction algorithm based on image processing methods. Springer, IFIP International Conference on Computer Information Systems and Industrial Management, pp 80–91

    Google Scholar 

  49. 49.

    Ting E, Ibrahim MZ (2017) A review of finger vein recognition system. J Telecomm Electron Computer Engineering 10(1–9):167–171

    Google Scholar 

  50. 50.

    Ting E, Ibrahim MZ (2018) A review of finger vein recognition system. J Telecommun Electron Comput Eng 10(1–9):167–171

    Google Scholar 

  51. 51.

    Umesh, H. Sehrawat, V. Siwach, “Analysis of finger vein based in recognition,” Int J Adv Res Comput Sci, vol. 8, no. 5, 2017, pp. 1818–1823.

  52. 52.

    Veluchamy S, Karlmarx LR (2017) System for multimodal biometric recognition based on finger knuckle and finger vein using feature-level fusion and k-support vector machine classifier. IET Biometrics 6(3):232–242

    Article  Google Scholar 

  53. 53.

    Wu J, Liu C (2011) Finger-vein pattern identification using principal component analysis and the neural network technique. Expert Systems with Applications, Elsevier 38:5423–5427

    Article  Google Scholar 

  54. 54.

    Wu J, Liu C (2011) Finger-vein pattern identification using SVM and the neural network technique. Expert Systems with Applications, Elsevier 38:14284–14289

    Google Scholar 

  55. 55.

    Wu G, Zheng R, Tian Y, Liu D (2020) Joint ranking SVM and binary relevance with robust low-rank learning for multi-label classification. Neural Netw 122:24–39. https://doi.org/10.1016/j.neunet.2019.10.002

    Article  MATH  Google Scholar 

  56. 56.

    Xiao R, Yang G, Yin Y, Yang L (Oct. 2012) A novel matching strategy for Finger vein recognition. in Proc Int Conf Intell Sci Intell Data Eng, Nanjing, China, pp. 364_371.

  57. 57.

    Xiaoming X, Yang L, Yin Y (2016) Learning discriminative binary codes for finger vein recognition. Elsevier, Pattern Recognition

    Google Scholar 

  58. 58.

    Xie SJ, Yoon S, Yang J, Lu Y, Park DS, Zhou B (2014) Feature component-based extreme learning Machines for Finger Vein Recognition. Springer, Cognitive Computing

    Google Scholar 

  59. 59.

    Yang X-S, Deb S (2009) “Cuckoo search via Lévy flights”, world congress on Nature & Biologically Inspired Computing (NaBIC 2009). IEEE Publications pp 210–214

  60. 60.

    Yang L, Dong H (2019) Robust support vector machine with generalized quantile loss for classification and regression. Appl Soft Comput 81:105483. https://doi.org/10.1016/j.asoc.2019.105483

    Article  Google Scholar 

  61. 61.

    Yang G, Xi X, Yin Y (2012) Finger vein recognition based on a personalized best bit map. Sensors 12:1738–1757

    Article  Google Scholar 

  62. 62.

    Yang L, Yang G, Yin Y, Zhou L (2014) A survey of finger vein recognition. Chinese Conference on Biometric Recognition 8833:234–243

    Google Scholar 

  63. 63.

    Yang W, Zhou F, Liao Q (May 2014) Feature-level fusion of finger veins and finger dorsal texture for personal authentication based on orientation selection. IEICE Trans Inf Syst 97(5):1371–1373

    Article  Google Scholar 

  64. 64.

    Yang L, Yang G, Yin Y (2017) Finger vein recognition with anatomy structure analysis. IEEE Transactions on Circuits and Systems for Video Technology 28(8):1892–1905

    Article  Google Scholar 

  65. 65.

    Yang L, Yang G, Xi X, Meng X, Zhang C, Yin Y (2017) Tri-branch vein structure assisted finger vein recognition. IEEE Access 5:21020–21028

    Article  Google Scholar 

  66. 66.

    Yin Y, Liu L, Sun X (Dec. 2011) SDUMLA-HMT: A multimodal biometric database. in Proc 6th Chin Conf Biometric Recognit Biometric Recognit:260–268

  67. 67.

    Zhao G, Pietikainen M (2007) Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6):915–928

    Article  Google Scholar 

  68. 68.

    Zheng H, Xu Q, Ye Y, Li W (2017) Effects of meteorological factors on finger vein recognition. IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)

  69. 69.

    Zhou L, Yang G, Yin Y, Yang L, Wang K (2016) Finger vein recognition based on stable and discriminative superpixels. Int J Pattern Recogn Artificial Intell 30(6)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shalli Rani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kapoor, K., Rani, S., Kumar, M. et al. Hybrid local phase quantization and grey wolf optimization based SVM for finger vein recognition. Multimed Tools Appl (2021). https://doi.org/10.1007/s11042-021-10548-1

Download citation

Keywords

  • Biometric
  • Finger vein
  • Support vector machines (SVM)
  • Local directional pattern (LDP)
  • Local phase quantization (LQP)
  • Grey wolf optimization (GWO)