A color image watermarking framework for copyright protection of stereo images based on binocular just noticeable difference and LU decomposition

Abstract

The copyright protection of three-dimensional (3D) content is a matter of interest in artistic and creative works due to the rights of the holder for the distribution of the material. However, although stereo images are widely used for the generation of 3D content, there is a little amount of research focused on copyright protection for this type of image. In this study, a novel invisible and blind color image watermarking framework for protecting the copyright of the stereo images based on Binocular Just Noticeable Difference (BJND) and lower-and-upper (LU) decomposition is proposed. In this framework, a color watermark is encoded to reduce the information. Then, the BJND model is calculated in the R channel of a stereo image, and finally, LU decomposition is applied into the G and B channels to embed and extract a color watermark. The BJND model has demonstrated a remarkable sensitivity comparable with the Human Visual System (HVS) in luminance changes such as the ones presented in stereo images, guaranteeing a good protection performance and a high imperceptibility. The proposed framework was compared with other state-of-the-art techniques, and it has demonstrated better performance and high resistance to attacks of JPEG compression or impulsive and Gaussian noise. Additionally, this novel framework does not affect the generation of the disparity map or the 3D content when the watermarked stereo images are used for their creation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12.
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

References

  1. 1.

    Abdelwahab KM, Abd El-atty SM, El-Shafai W, El-Rabaie S, Abd El-Samie FE (2020) Efficient SVD-based audio watermarking technique in FRT domain. Multimed Tools Appl 79:5617–5648. https://doi.org/10.1007/s11042-019-08023-z

  2. 2.

    Aja-Fernández S, Estépar RSJ, Alberola-López C, Westin CF (2006) Image quality assessment based on local variance. Annu Int Conf IEEE Eng Med Biol – Proc:4815–8. https://doi.org/10.1109/IEMBS.2006.259516.

  3. 3.

    Bitaghsir SA, Karimi N, Azizi S, Samavi S (2014) Stereo image watermarking method based on binocular just noticeable difference. 2014 11th Int ISC Conf Inf Secur Cryptol IEEE, p 33–8. https://doi.org/10.1109/ISCISC.2014.6994018.

  4. 4.

    Cao Z, Wang L (2019) A secure video watermarking technique based on hyperchaotic Lorentz system. Multimed Tools Appl 78:26089–26109. https://doi.org/10.1007/s11042-019-07809-5

    Article  Google Scholar 

  5. 5.

    Chierichetti F, Kumar R, Pandey S, Vassilvitskii S (2010) Finding the Jaccard Median. Proc. Twenty-First Annu. ACM-SIAM Symp. Discret. Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, pp 293–311. https://doi.org/10.1137/1.9781611973075.25

    Google Scholar 

  6. 6.

    Esfahani R, Akhaee MA, Norouzi Z (2019) A fast video watermarking algorithm using dual tree complex wavelet transform. Multimed Tools Appl 78:16159–16175. https://doi.org/10.1007/s11042-018-6892-6

    Article  Google Scholar 

  7. 7.

    Garg P, Kishore RR(2020) Performance comparison of various watermarking techniques. Multimed Tools Appl:1–47. https://doi.org/10.1007/s11042-020-09262-1.

  8. 8.

    Gladis AN (2016) Compression and denoise of an image by LU and QR Decompoition. Int J Res Eng Appl Sci 6:1–4

    Google Scholar 

  9. 9.

    Gonzalez-Huitron V, Ponomaryov V, Ramos-Diaz E, Sadovnychiy S (2018) Parallel framework for dense disparity map estimation using Hamming distance. Signal, Image Video Process 12:231–238. https://doi.org/10.1007/s11760-017-1150-3

    Article  Google Scholar 

  10. 10.

    Hirschmuller H, Scharstein D (2009) Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans Pattern Anal Mach Intell 31:1582–1599. https://doi.org/10.1109/TPAMI.2008.221

    Article  Google Scholar 

  11. 11.

    International Telecommunication Union (2002) Methodology for the subjective assessment of the quality of television pictures. ITU-R BT.500–11 pp 2–24

  12. 12.

    Karajeh H, Khatib T, Rajab L, Maqableh M (2019) A robust digital audio watermarking scheme based on DWT and Schur decomposition. Multimed Tools Appl 78:18395–18418. https://doi.org/10.1007/s11042-019-7214-3

    Article  Google Scholar 

  13. 13.

    Legge GE, Foley JM (1980) Contrast masking in human vision. J Opt Soc Am 70:1458–1471

    Article  Google Scholar 

  14. 14.

    Liao X, Yu Y, Li B, Li Z, Qin Z (2020) A New Payload Partition Strategy in Color Image Steganography. IEEE Trans Circuits Syst Video Technol 30:685–696. https://doi.org/10.1109/TCSVT.2019.2896270

    Article  Google Scholar 

  15. 15.

    Liao X, Yin J, Chen M, Qin Z (2020) Adaptive Payload Distribution in Multiple Images Steganography Based on Image Texture Features. IEEE Trans Dependable Secur Comput:1–1. https://doi.org/10.1109/tdsc.2020.3004708.

  16. 16.

    Liu D, Yuan Z, Su Q (2020) A blind color image watermarking scheme with variable steps based on Schur decomposition. Multimed Tools Appl 79:7491–7513. https://doi.org/10.1007/s11042-019-08423-1

    Article  Google Scholar 

  17. 17.

    Luo AW, Gong LH, Zhou NR, Zou WP (2020) Adaptive and blind watermarking scheme based on optimal SVD blocks selection. Multimed Tools Appl 79:243–261. https://doi.org/10.1007/s11042-019-08074-2

    Article  Google Scholar 

  18. 18.

    Mohanarathinam A, Kamalraj S, Prasanna Venkatesan GKD, Ravi R V., Manikandababu CS (2019) Digital watermarking techniques for image security: a review. J Ambient Intell Humaniz Comput:1–9. https://doi.org/10.1007/s12652-019-01500-1.

  19. 19.

    Muñoz-Ramirez D-O, Ponomaryov V, Reyes-Reyes R, Cruz-Ramos C, Garcia-Salgado B-P (2019) Invisible watermarking framework that authenticates and prevents the visualization of anaglyph images for copyright protection;27:1571–88. https://doi.org/10.3906/elk-1810-138.

  20. 20.

    Muñoz-Ramirez DO, Ponomaryov V, Reyes-Reyes R, Cruz-Ramos C, Garcia-Salgado BP (2020) Parallel color image watermarking scheme for multiple picture object based on multithreading coding. Proc SPIE 11401, Real-Time Image Processing and Deep Learning. https://doi.org/10.1117/12.2556289.

  21. 21.

    Nagarajan D (2017) Image denoising using lu decomposition and feature extraction using GLCM. Int J Adv Res Comput Sci 8:675–677. https://doi.org/10.26483/ijarcs.v8i7.4370

  22. 22.

    Netravali AN, Haskell BG (1995) Visual psychophysics. In: Digital pictures. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-6950-7_4.

  23. 23.

    Niu Y, Souidene W, Beghdadi A (2011) A visual sensitivity model based stereo image watermarking scheme. 3rd Eur Work Vis Inf Process, IEEE, p 211–5. https://doi.org/10.1109/EuVIP.2011.6045546.

  24. 24.

    Noriega-Galeana LR, Reyes-Reyes R, Ponomaryov V, Cruz-Ramos C (2017) LSB-steganography framework for stereoscopic images based on BJND. 2017 14th Int Conf Electr Eng Comput Sci Autom Control IEEE, p 1–6. https://doi.org/10.1109/ICEEE.2017.8108888.

  25. 25.

    Northam L, Asente P, Kaplan CS (2013) Stereoscopic 3D image stylization. Comput Graph 37:389–402. https://doi.org/10.1016/J.CAG.2012.11.005

    Article  Google Scholar 

  26. 26.

    Ou ZH, Chen LH (2016) A robust watermarking method for stereo-pair images based on unmatched block bitmap. Multimed Tools Appl 75:3259–3280. https://doi.org/10.1007/s11042-014-2433-0

    Article  Google Scholar 

  27. 27.

    Ponomarenko N, Ieremeiev O, Lukin V, Jin L, Egiazarian K, Astola J et al (2013) A New Color Image Database TID2013: Innovations and Results. Springer, Cham, pp 402–413. https://doi.org/10.1007/978-3-319-02895-8_36

    Google Scholar 

  28. 28.

    Scharstein D, Hirschmüller H, Kitajima Y, Krathwohl G, Nešić N, Wang X et al (2014) High-resolution stereo datasets with subpixel-accurate ground truth. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol 8753. Springer, Cham, pp 31–42. https://doi.org/10.1007/978-3-319-11752-2_3

    Google Scholar 

  29. 29.

    Shrikalaa M, Mathivanan P, Leena Jasmine JS (2013) Conversion of 2D stegano images into a 3D stereo iniage using RANSAC. 2013 IEEE Conf. Inf. Commun. Technol., IEEE, p 686–90. https://doi.org/10.1109/CICT.2013.6558182.

  30. 30.

    Singh D, Singh SK, DWT-SVD and DCT (2017) based robust and blind watermarking scheme for copyright protection. Multimed Tools Appl 76:13001–13024. https://doi.org/10.1007/s11042-016-3706-6

    Article  Google Scholar 

  31. 31.

    Su Q, Wang G, Zhang X, Lv G, Chen B (2018) A new algorithm of blind color image watermarking based on LU decomposition. Multidimens Syst Signal Process 29:1055–1074. https://doi.org/10.1007/s11045-017-0487-7

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Tian C, Wen RH, Zou WP, Gong LH (2020) Robust and blind watermarking algorithm based on DCT and SVD in the contourlet domain. Multimed Tools Appl 79:7515–7541. https://doi.org/10.1007/s11042-019-08530-z

    Article  Google Scholar 

  33. 33.

    Turing AM (1948) Rounding-off Errors in Matrix Processes. Q J Mech Appl Math 1:287–308

    MathSciNet  Article  Google Scholar 

  34. 34.

    Tyagi S, Singh HV, Agarwal R, Gangwar SK (2016) Digital watermarking techniques for security applications. Int. Conf. Emerg. Trends Electr. Electron. Sustain. Energy Syst. ICETEESES 2016, Institute of Electrical and Electronics Engineers Inc., p 379–82. https://doi.org/10.1109/ICETEESES.2016.7581413.

  35. 35.

    Wang W, Zhao J (2016) Hiding depth information in compressed 2D image/video using reversible watermarking. Multimed Tools Appl 75:4285–4303. https://doi.org/10.1007/s11042-015-2475-y

    Article  Google Scholar 

  36. 36.

    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans Image Process 13:600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  37. 37.

    Wang D, Yang F, Zhang H (2016) Blind color image watermarking based on DWT and LU decomposition. J Inf Process Syst 12:765–778. https://doi.org/10.3745/JIPS.03.0055

    Article  Google Scholar 

  38. 38.

    Wu J, Ma X (2019) An improved blind watermarking method based on SWT and LU decomposition. Proc SPIE 11179, Eleventh International Conference on Digital Image Processing (ICDIP 2019). https://doi.org/10.1117/12.2539748.

  39. 39.

    Wu JY, Huang WL, Xia-Hou WM, Zou WP, Gong LH (2020) Imperceptible digital watermarking scheme combining 4-level discrete wavelet transform with singular value decomposition. Multimed Tools Appl 79:22727–22747. https://doi.org/10.1007/s11042-020-08987-3

    Article  Google Scholar 

  40. 40.

    Yang W-C, Chen L-H (2015) Reversible DCT-based data hiding in stereo images. Multimed Tools Appl 74:7181–7193. https://doi.org/10.1007/s11042-014-1958-6

    Article  Google Scholar 

  41. 41.

    Yu M, Wu A, Luo T, Jiang G, Zhou W, Fu S (2012) A new stereo image watermarking method for 3D media. Procedia Eng 29:2399–2404. https://doi.org/10.1016/j.proeng.2012.01.322

    Article  Google Scholar 

  42. 42.

    Zhao Y, Chen Z, Zhu C, Tan Y-P, Yu L (2011) Binocular Just-Noticeable-Difference Model for Stereoscopic Images. IEEE Signal Process Lett 18:19–22. https://doi.org/10.1109/LSP.2010.2090041

    Article  Google Scholar 

  43. 43.

    Zhou NR, WMX H, Wen RH, Zou WP (2018) Imperceptible digital watermarking scheme in multiple transform domains. Multimed Tools Appl 77:30251–30267. https://doi.org/10.1007/s11042-018-6128-9

  44. 44.

    Zhou NR, Luo AW, Zou WP (2019) Secure and robust watermark scheme based on multiple transforms and particle swarm optimization algorithm. Multimed Tools Appl 78:2507–2523. https://doi.org/10.1007/s11042-018-6322-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Instituto Politécnico Nacional (IPN) and Consejo Nacional de Ciencia y Tecnología (CONACyT) for their support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Ponomaryov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Ramírez, DO., García-Salgado, BP., Ponomaryov, V. et al. A color image watermarking framework for copyright protection of stereo images based on binocular just noticeable difference and LU decomposition. Multimed Tools Appl (2021). https://doi.org/10.1007/s11042-020-10445-z

Download citation

Keywords

  • Stereo image
  • 24 bits color watermark
  • BJND
  • Copyright protection
  • Blind extraction
  • LU decomposition