A comprehensive review on brain tumor segmentation and classification of MRI images

Abstract

In the analysis of medical images, one of the challenging tasks is the recognition of brain tumours via medical resonance images (MRIs). The diagnosis process is still tedious due to its complexity and considerable variety in tissues of tumor perception. Therefore, the necessities of tumor identification techniques are improving nowadays for medical applications. In the past decades, different approaches in the segmentation of various precisions and complexity degree have been accomplished, which depends on the simplicity and the benchmark of the technique. An overview of this analysis is to give out the summary of the semi-automatic techniques for brain tumor segmentation and classification utilizing MRI. An enormous amount of MRI based image data is accomplished using deep learning approaches. There are several works, dealing on the conventional approaches for MRI-based segmentation of brain tumor. Alternatively, in this review, we revealed the latest trends in the methods of deep learning. Initially, we explain the several threads in MRI pre-processing, including registration of image, rectification of bias field, and non-brain tissue dismissal. And terminally, the present state evaluation of algorithm is offered and forecasting the growths to systematise the MRI-based brain tumor into a regular cyclic routine in the clinical field are focussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16:641–647

    Article  Google Scholar 

  2. 2.

    Ahmmed R, Rahman MA, Hossain MF (2018) An advanced algorithm combining SVM and ANN classifiers to categorize tumors with position from brain MRI images. Advances in Science, Technology and Engineering Systems Journal 3(2):40–48

    Article  Google Scholar 

  3. 3.

    Anaraki AK, Ayati M, Kazemi F (2019) Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybernetics and Biomedical Engineering 39(1):63–74

    Article  Google Scholar 

  4. 4.

    Angulakshmi M, Priya GGL (2017) Automatic brain tumour segmentation of magnetic resonance images (MRI) based on region of interest (ROI). Journal of Engineering Science and Technology, Taylor’s university 12(4):875–887

    Google Scholar 

  5. 5.

    Anitha V, Murugavalli S (2016) Brain tumor classification using two-tier classifier with adaptive segmentation technique. IET Comput Vis 10(1):9–17

    Article  Google Scholar 

  6. 6.

    Aslama A, Khan E, Beg MMS (2015) Improved edge detection algorithm for brain tumor segmentation. Procedia Computer Science Elsevier 58:430–437

    Article  Google Scholar 

  7. 7.

    Balafar MA (2014) Fuzzy C-mean based brain MRI segmentation algorithms. Artif Intell Rev 41(3):441–449

    Article  Google Scholar 

  8. 8.

    Bankman IN (2000) Handbook of medical imaging, processing and analysis academic press, CA.

  9. 9.

    Bao S, Siqi B, Chung ACS (2016) B Multi-scale structured CNN with label consistency for brain MR image segmentation, Computer Methods in Biomechanics and Biomedical Engineering, Imaging & Visualization. 1–5.

  10. 10.

    Battaglini M, Smith SM, Brogi S, de Stefano N (2008) Enhanced brain extraction improves the accuracy of brain atrophy estimation. NeuroImage 40(2):583–589

    Article  Google Scholar 

  11. 11.

    Bauer S, Nolte L-P, Reyes M (2011) Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Berlin, Heidelberg 354–361.

  12. 12.

    Bezdek JC, Hall LO and Clarke LP (1993) Review of MR image segmentation techniques using pattern recognition. Med Phys 20(4).

  13. 13.

    Birenbaum A, Greenspan H (2016) Longitudinal multiple sclerosis lesion segmentation using multi-view convolutional neural networks. In: International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. Springer, pp 58–67

  14. 14.

    Brosch T, Yoo Y, Tang LY, Li DK, Traboulsee A, Tam R (2015) Deep convolutional encoder networks for multiple sclerosis lesion segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention Springer, In, pp 3–11

    Google Scholar 

  15. 15.

    Brosch T, Tang LY, Yoo Y, Li DK, Traboulsee A, Tam R (2016) Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging 35(5):1229–1239

    Article  Google Scholar 

  16. 16.

    Chang HH, Valentino DJ, Duckwiler GR, Toga AW (2007) Segmentation of brain MR images using a charged fluid model. IEEE Trans Biomed Eng 54(10):1798–1813

    Article  Google Scholar 

  17. 17.

    Chen PF, Steen RG, Yezzi A, Krim H (2009) Brain Mri T1-map and T1-weighted image segmentation in a variational framework, In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing, Taipei, Taiwan. 417–420.

  18. 18.

    Chen W, Liu B, Peng S, Sun J and Qiao X (2018, September) S3D-UNet: separable 3D U-Net for brain tumor segmentation. In International MICCAI Brainlesion Workshop, Springer, Cham358–368.

  19. 19.

    Cheng JZ et al (2016) Computer-aided diagnosis with deep learning architecture, Applications to breast lesions in US images and pulmonary nodules in CT scans. Sci Rep 6:24454

    Article  Google Scholar 

  20. 20.

    Chiţa SM, Benders M, Moeskops P, Kersbergen KJ, Viergever MA, Isgum I (2013) B Automatic segmentation of the preterm neonatal brain with MRI using supervised classification, In Medical Imaging 2013: Image Processing.

  21. 21.

    Chithambaram T, Perumal K (2017) Brain tumor segmentation using genetic algorithm and ANN techniques. IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, pp 970–982

    Google Scholar 

  22. 22.

    Crum WR, Camara O, Hill DLG (2006) Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans Med Imaging 25(11):1451–1461

    Article  Google Scholar 

  23. 23.

    Dalca AV, Guttag J, Sabuncu MR In CVPR 2018: Anatomical priors in convolutional networks for unsupervised biomedical segmentation

  24. 24.

    Dalca AV, Yu E, Golland P, Fischl B, Sabuncu MR, Iglesias JE (2019) Unsupervised deep learning for Bayesian brain MRI segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, pp 356–365

  25. 25.

    Darling K (2017) Complementary and alternative medicines for cancer treatment: a patient perspective: a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Health Psychology with endorsement at Massey University. Palmerston North, New Zealand. PhD diss., Massey University.

  26. 26.

    Davy AH, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31

    Article  Google Scholar 

  27. 27.

    de Brebisson A, Montana G (2015) Deep neural networks for anatomical brain segmentation, In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops20–28.

  28. 28.

    Deimling A Gliomas, Volume 171 of recent results in cancer research. Springer. Berlin.

  29. 29.

    Despotovic I, Vansteenkiste E and Philips W (September 2010) Brain volume segmentation in newborn infants using multi-modal MRI with a low inter-slice resolution, In Proceedings of the AnnualInternational Conference of the IEEE Engineering in Medicineand Biology Society (EMBC ‘10). Buenos Aires, Argentina 5038–5041.

  30. 30.

    Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302

    Article  Google Scholar 

  31. 31.

    Dokur Z (2008) A unified framework for image compression and segmentation by using an incremental neural network. Expert Syst Appl 34:611–619

    Article  Google Scholar 

  32. 32.

    Dong H, Yang G, Liu F, Mo Y, Guo Y (2017) Automatic brain tumor detection and segmentation using u-net based fully convolutional networks. In annual conference on medical image understanding and analysis, 506–517.

  33. 33.

    Drakopoulos F, Chrisochoides NP (2016) Accurate and fast deformable medical image registration for brain tumor resection using image-guided neurosurgery. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 4(2):112–126

    Google Scholar 

  34. 34.

    El Hadji S, Moccia S, Scorza D, Rizzi M, Cardinale F, Baselli G and De Momi E (2019, July) Brain-vascular segmentation for SEEG planning via a 3D fully-convolutional neural network. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 1014–1017.

  35. 35.

    El-Dahshan EAS, Hosny T, Salem ABM (2010) Hybrid intelligent techniques for MRI brain images classification. Digit Signal Process 20:433–444

    Article  Google Scholar 

  36. 36.

    El-Dahshan ESA, Mohsen HM, Revett K, Salem ABM (2014) Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst Appl 41:5526–5545. https://doi.org/10.1016/j.eswa.2014.01.021

    Article  Google Scholar 

  37. 37.

    Evans AC, Collins DL, Mills SR, Brown ED, Kelly RL and Peters TM (November, 1993)3D statistical neuroanatomical models from 305 MRI volumes, In Proceedings of the IEEE Nuclear Science Symposium & Medical Imaging Conference, 1813–1817.

  38. 38.

    Gaikwad SB, Joshi MS (2015) Brain tumor classification using principal component analysis and probabilistic neural network. Int J Comput Appl 120:5–9

    Google Scholar 

  39. 39.

    Galimzianova A, Pernus F, Likar B, Spiclin ZB (2016) Stratified mixture modeling for segmentation of white-matter lesions in brain MR images. Neuroimaging. 124:1031–1043

    Article  Google Scholar 

  40. 40.

    Girard F, Kavalec C, Cheriet F (2019) Joint segmentation and classification of retinal arteries/veins from fundus images. Artif Intell Med 94:96–109

    Article  Google Scholar 

  41. 41.

    Gonzalez RC, Woods RE (2002) Digital Image Processing, second edn. Prentice Hall, New Jersey

  42. 42.

    Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on MRI brain tumor segmentation. MagnReson Imaging 31(8):1426–1438

    Article  Google Scholar 

  43. 43.

    Gumaei A, Hassan MM, Hassan M, Alelaiwi A, Fortino G (2019) A hybrid feature extraction method with regularized extreme learning machine for brain tumor classification. IEEE Access 7:36266–36273

    Article  Google Scholar 

  44. 44.

    Huang M, Yang W, Wu Y, Jiang J, Chen W, Feng Q (2014) Brain tumor segmentation based on local independent projection-based classification. IEEE Trans Biomed Eng 6:2633–2645

    Article  Google Scholar 

  45. 45.

    Hussain S, Anwar SM and Majid M (2017) Brain tumor segmentation using cascaded deep convolutional neural network. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 1998–2001.

  46. 46.

    Hussein E, Mahmoud D (2012) Brain tumor detection using artificial neural networks. J Sci Technol 13:31–39

    Google Scholar 

  47. 47.

    Iglesias JE, Sabuncu MR (2015) Multi-atlas segmentation of biomedical images, a survey. Med Image Anal 24:205–219

    Article  Google Scholar 

  48. 48.

    Iglesias JE, Sabuncu MR, Leemput KV (2013) A unified framework for cross-modality multi-atlas segmentation of brain MRI. Med Image Anal 17:1181–1191

    Article  Google Scholar 

  49. 49.

    Ilhan U, Ilhan A (2017) Brain tumor segmentation based on a new threshold approach. Procedia computer science 120:580–587

    Article  Google Scholar 

  50. 50.

    Ilunga-Mbuyamba E, Avina-Cervantes JG, Cepeda-Negrete J, Ibarra-Manzano MA, Chalopin C (2017) Automatic selection of localized region-based active contour models using image content analysis applied to brain tumor segmentation. Comput Biol Med 91:69–79

    Article  Google Scholar 

  51. 51.

    Ji Z, Sun Q, Xia Y, Chen Q, Xia D, Feng D (2012) Generalized rough fuzzy c-means algorithm for brain MR image segmentation. Comput Methods Prog Biomed 108:644–655

    Article  Google Scholar 

  52. 52.

    Kang WX, Yang QQ and Liang RP (2009) The comparative research on image segmentation algorithms, 2009 First International Workshop on IEEE Education Technology and Computer Science.

  53. 53.

    Kannan SR, Ramathilagam S, Sathya A, Pandiyarajan R (2010) Effective fuzzy c-means based kernel function in segmenting medical images. ComputBiol Med 40:572–579

    Article  Google Scholar 

  54. 54.

    Karimaghaloo Z, Rivaz H, Arnold DL, Collins DL, Arbel T (2015) B Temporal hierarchical adaptive texture CRF for automatic detection of gadolinium-enhancing multiple sclerosis lesions in brain MRI. IEEE Trans Med Imaging 34(6):1227–1241

    Article  Google Scholar 

  55. 55.

    Kaus MR, Warfield SK, Nabavi A, Black PM, Jolesz FA, Kikinis R (2001) Automated segmentation of MR images of brain tumors 1. Radiology 218:586–591

    Article  Google Scholar 

  56. 56.

    Khan OI (2020) A hybrid unsupervised classification technique for automatic brain MRI tumor recognition. PhD diss.

    Google Scholar 

  57. 57.

    Kharrat A, Mahmoud NEJI (2019) Feature selection based on hybrid optimization for magnetic resonance imaging brain tumor classification and segmentation. Applied Medical Informatics 41(1):9–23

    Google Scholar 

  58. 58.

    Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzi A (1995) Gradient flows and geometric active contour models. Proceedings on IEEE Fifth International Conference on Computer Vision

  59. 59.

    Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bendszus M, Biller A (2016) Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. Neuroimage 129:460–469

    Article  Google Scholar 

  60. 60.

    Kleihues P, Burger PC, Scheithauer W (2013) The new WHO classification of brain tumours. Brain Pathol 3(3):255–268

    Article  Google Scholar 

  61. 61.

    Kooi T et al (2017) Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35:303–312

    Article  Google Scholar 

  62. 62.

    Krizhevsky A, Sutskever I, Hinton GF (2012) Image net classification with deep convolutional neural networks. Adv Neural Inf Proces Syst:1097–1105

  63. 63.

    Kumar A, Ramachandran M, Gandomi AH, Patan R, Lukasik S, Soundarapandian RK (2019) A deep neural network based classifier for brain tumor diagnosis. Appl Soft Comput 82:105528

    Article  Google Scholar 

  64. 64.

    Kumari N and Saxena S (2018) Review of brain tumor segmentation and classification, In 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT). IEEE 1–6.

  65. 65.

    Lafferty J, McCallum A and Pereira FCN (2001) Conditional random fields probabilistic models for segmenting and labeling sequence data.

  66. 66.

    Lewis EB, Fox NC (2004) Correction of differential intensity inhomogeneity in longitudinal MR images. NeuroImage 23(1):75–83

    Article  Google Scholar 

  67. 67.

    Li BN, Chui CK, Chang S, Ong SH (2011) Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput Biol Med 41(1):1–10

    Article  Google Scholar 

  68. 68.

    Li W, Wang G, Fidon L, Ourselin S, Cardoso MJ, Vercauteren T (2017) On the compactness, efficiency, and representation of 3d convolutional networks: brain parcellation as a pretext task. International Conference on Information Processing in Medical Imaging, Springer, In, pp 348–360

    Google Scholar 

  69. 69.

    Li X, Chen H, Qi X, Dou Q, Fu C-W, Heng P-A (2018) H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans Med Imaging 37(12):2663–2674

    Article  Google Scholar 

  70. 70.

    Li J, Yu ZL, Gu Z, Liu H, Li Y (2019) MMAN: Multi-modality aggregation network for brain segmentation from MR images. Neurocomputing 358:10–19

    Article  Google Scholar 

  71. 71.

    Li J, Luo Y, Shi L, Zhang X, Li M, Zhang B, Wang D (2020) Automatic fetal brain extraction from 2D in utero fetal MRI slices using deep neural network. Neurocomputing 378:335–349

    Article  Google Scholar 

  72. 72.

    Litjens G et al (2016) Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep 6:26286

    Article  Google Scholar 

  73. 73.

    Livne M, Rieger J, Aydin OU, Taha AA, Akay EM, TabeaKossen AA, Sobesky J et al (2019) A U-Net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease. Front Neurosci 13

  74. 74.

    Lotjonen JMP, Wolz R, Koikkalainen JR et al (2010) Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage 49(3):2352–2365

    Article  Google Scholar 

  75. 75.

    Luo S, Li R, Ourselin S (2003) A new deformable model using dynamic gradient vector flow and adaptive balloon forces. Workshop on Digital Image Computing, APRS

    Google Scholar 

  76. 76.

    Lyksborg M, Puonti O, Agn M, Larsen R (2015) An ensemble of 2D convolutional neural networks for tumor segmentation, In: Scandinavian Conference on Image Analysis. Springer. 201–211

  77. 77.

    Makropoulos A et al (2014) B Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans Med Imaging 33(9):1818–1831

    Article  Google Scholar 

  78. 78.

    Masutani Y, Schiemann T and Hohne KH (1998) Vascular shape segmentation and structure extraction using a shapebased region-growing model. in Medical Image Computing andComputer-Assisted Interventation—MICCAI'98: Proceedings ofthe 1st International Conference Cambridge, MA, USA, October11–13, 1998, vol. 1496 of Lecture Notes in Computer Science, Springer, Berlin, Germany. 1242–1249.

  79. 79.

    Mittal M, Goyal LM, Kaur S, Kaur I, Verma A, Hemanth DJ (2019) Deep learning based enhanced tumor segmentation approach for MR brain images. Appl Soft Comput 78:346–354

    Article  Google Scholar 

  80. 80.

    Moeskops P et al (Sep 2015) Automatic segmentation of MR brain images of preterm infants using supervised classification. Neuroimage. 118:628–641

    Article  Google Scholar 

  81. 81.

    Moeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders MJ, Isgum I (2016) Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 35(5):1252–1261

    Article  Google Scholar 

  82. 82.

    Mohsen H, El-Dahshan E-SA, El-Horbaty E-SM, Salem A-BM (2018) Classification using deep learning neural networks for brain tumors. Future Computing Inform J 3(1):68–71

  83. 83.

    Motagi AC, Malemath VS (2018) Detection of brain tumor using expectation maximization (EM) and watershed. International journal of scientific research in computer science and engineering 6(3):76–80

    Article  Google Scholar 

  84. 84.

    Mozaffari MH and Lee W-S (2016) Multilevel thresholding segmentation of T2 weighted brain MRI images using convergent heterogeneous particle swarm optimization. arXiv preprint arXiv:1605.04806.

  85. 85.

    Murali E, Meena K (2019) Stochastic gradient descent optimizer for segmentation of brain tumor using Mask R-CNN.

  86. 86.

    Murgasova M (2008) Segmentation of brain MRI during early childhood. Dissertaion, Imperial College London

    Google Scholar 

  87. 87.

    Payabvash S, Aboian M, Tihan T, Cha S (2020) Machine learning decision tree models for differentiation of posterior fossa tumors using diffusion histogram analysis and structural MRI findings. Front Oncol 10:71

    Article  Google Scholar 

  88. 88.

    Prakash RM, ShanthaSelvaKumari RC Fuzzy, Means integrated with spatial information and contrast enhancement for segmentation of MR brain images. Int J Imaging Syst Technol 26:116–123

  89. 89.

    Prastawa M, Gerig G (2008) Automatic MS lesion segmentation by outlier detection and information theoretic region partitioning, Grand Challenge Work. Mult Scler Lesion Segm Challenge:1–8

  90. 90.

    Raju AR, Pabboju S, Rao RR (2020) Brain image classification using dual-tree M-band wavelet transform and naïve bayes classifier. In Intelligent Computing in Engineering, Springer, Singapore, pp 635–642

    Google Scholar 

  91. 91.

    Rani N and Vashisth S (2017) Brain tumor detection and classification with feed forward back-prop neural network. arXiv preprint arXiv:1706.06411.

  92. 92.

    Russakovsky O et al (2015) BImageNet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252

    MathSciNet  Article  Google Scholar 

  93. 93.

    Sajjad M, Khan S, Muhammad K, Wu W, Ullah A, Baik SW (Jan. 2019) Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J Comput Sci 30:174–182

    Article  Google Scholar 

  94. 94.

    Saouli R, Akil M, Kachouri R (2018) Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images[J]. Comput Methods Prog Biomed 166:39–49

    Article  Google Scholar 

  95. 95.

    Saraswathi D, Priya BL, Lakshmi RP (2019) Brain tumor segmentation and classification using self organizing map. In: 2019 IEEE International Conference on System. Computation, Automation and Networking (ICSCAN), pp 1–5

    Google Scholar 

  96. 96.

    Sathik M, Nisha S (2020) Performance analysis of bias correction techniques in brain MR images. Int J Inf Technol:1–7

  97. 97.

    Seetha J, Raja SS (2018) Brain tumor classification using convolutional neural networks. Biomedical & Pharmacology Journal 11(3):1457

    Article  Google Scholar 

  98. 98.

    Shattuck DW et al (2008) B Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage. 39(3):1064–1080

    Article  Google Scholar 

  99. 99.

    Shi F, Shen D, Yap PT, Fan Y, Cheng JZ, An H, Wald LL, Gerig G, Gilmore JH, Lin W (2011) CENTS: Cortical enhanced neonatal tissue segmentation. Hum Brain Mapp 32:382–396

    Article  Google Scholar 

  100. 100.

    Shivhare SN, Kumar N, Singh N (2019) A hybrid of active contour model and convex hull for automated brain tumor segmentation in multimodal MRI. Multimed Tools Appl 78(24):34207–34229

    Article  Google Scholar 

  101. 101.

    Sudre CH, Cardoso MJ, Bouvy WH, Biessels GJ, Barnes J, Ourselin SB (2015) Bayesian model selection for pathological neuroimaging data applied to white matter lesion segmentation. IEEE Trans Med Imaging 34(10):2079–2102

    Article  Google Scholar 

  102. 102.

    Tandel GS, Biswas M, Kakde OG, Tiwari A, Suri HS, Turk M, Laird JR et al (2019) A review on a deep learning perspective in brain cancer classification. Cancers 11(1):111

    Article  Google Scholar 

  103. 103.

    Tarkhaneh O, Shen H (2019) An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation. Expert Syst Appl 138

  104. 104.

    Thiyagarajan A, Pandurangan U (2015) Comparative analysis of classifier performance on MR brain images. Int Arab J Inf Technol 12:772–779

    Google Scholar 

  105. 105.

    Tu Z, Narr KL, Dollar P, Dinov I, Thompson PM, Toga AW (2008) Brain anatomical structure segmentation by hybrid discriminative/generative models. IEEE Transactions onMedical Imaging 27(4):495–508

    Article  Google Scholar 

  106. 106.

    Vansteenkiste E, (2007) Quantitative analysis of ultrasound images ofthe preterm brain [Ph.D. dissertation], Ghent University.

  107. 107.

    Vasilakos AV, Tang Y, Yao Y (2016) Neural networks for computer-aided diagnosis in medicine, A review. Neuro computing 216:700–708

    Google Scholar 

  108. 108.

    Verma R, Zacharaki EL, Ou Y, Cai H, Chawla S, Lee SK, Melhem ER, Wolf R, Davatzikos C (2008) Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. AcadRadiol 15:966–977

    Google Scholar 

  109. 109.

    Wadhwa A, Bhardwaj A, Verma VS (2019) A review on brain tumor segmentation of MRI images[J]. Magn Reson Imaging

  110. 110.

    Wang L et al (2015) LINKS: Learning-based multi-source Integration framework for segmentation of infant brain image. Neuroimage. 108:160–172

    Article  Google Scholar 

  111. 111.

    Warfield SK, Kaus M, Jolesz FA, Kikinis R (2000) Adaptive, template moderated, spatially varying statistical classification. Med Image Anal 4(1):43–55

    Article  Google Scholar 

  112. 112.

    Weiss N, Rueckert D, Rao A (2013) BMultiple sclerosis lesion segmentation using dictionary learning and sparse coding. Med Image Comput Comput, Assist Interv 16(1):735–742

    Google Scholar 

  113. 113.

    Xue JH, Pizurica A, Philips W, Kerre E, van de Walle R, Lemahieu I (2003) An integrated method of adaptive enhancement for unsupervised segmentation of MRI brain images. PatternRecognition Letters 24(15):2549–2560

    Google Scholar 

  114. 114.

    Xue H, Srinivasan L, Jiang S et al (2007) Automatic segmentation and reconstruction of the cortex from neonatal MRI. NeuroImage 38(3):461–477

    Article  Google Scholar 

  115. 115.

    Zeng Z, Xie W, Zhang Y, Lu Y (2019) RIC-Unet: An improved neural network based on Unet for nuclei segmentation in histology images. Ieee Access 7:21420–21428

    Article  Google Scholar 

  116. 116.

    Zhang J, Ma KK, Er MH and Chong V (2004) Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine, International Workshop on Advanced Image Technology (IWAIT’04).

  117. 117.

    Zhang Y, Dong Z, Wu L, Wang S (2011) A hybrid method for MRI brain image classification, Expert Syst. Appl. 38:10049–10053

    Google Scholar 

  118. 118.

    Zhang T, Xia Y, Feng DD (2014) Hidden Markov random field model based brain MR image segmentation using clonal selection algorithm and Markov chain Monte Carlo method. Biomedical Signal Processing and Control 12:10–18

    Article  Google Scholar 

  119. 119.

    Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, Shen D (2015) Deep convolutional neural networks for multi-modality iso intense infant brain image segmentation. Neuroimage. 108:214–224

    Article  Google Scholar 

  120. 120.

    Zhao X, Wu Y, Song G et al (2018) A deep learning model integrating FCNNs and CRFs for brain tumorsegmentation[J]. Med Image Anal 43:98–111

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Champakamala Sundar Rao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rao, C.S., Karunakara, K. A comprehensive review on brain tumor segmentation and classification of MRI images. Multimed Tools Appl (2021). https://doi.org/10.1007/s11042-020-10443-1

Download citation

Keywords

  • MRI
  • Brain tumor
  • Segmentation
  • Bias field
  • Tissue
  • Image processing