Abstract
The Joint Video Exploration Team (JVET) has started to develop the next-generation video coding standard-H.266/Versatile Video Coding (H.266/VVC) based on H.265/High Efficiency Video Coding (H.265/HEVC) to provide higher compression performance. The H.266/VVC supports the flexible quadtree with a nested multi-type tree (QTMT) partition structure including quadtree (QT), binary tree (BT), and ternary tree (TT). The coding unit (CU) sizes range from 128 to 4 for the luma component or from 64 to 2 for the chroma component in the QTMT splitting structure. The introduction of small CU size, i.e., 2×N, leads to inefficient hardware implementation because it causes pipeline delayed and needs to process 2×N pixels in the hardware architecture. In addition, the inter or bi-predicted of small CU requires a higher memory bandwidth than the bi-predicted of 8×8 CU in H.266/VVC. To solve the above issues, we introduce a fast method to accelerate CU partition and mode decision, including an adaptive CU partition method and early skip mode detection method. The proposed algorithm consists of two parts: (1) adaptive remove 2×N CUs by skipping BT and TT splitting mode; (2) early skip bi-predicted or inter prediction of small CU. The experimental results demonstrate that the proposed scheme can save 47% coding time while maintaining the coding performance.
This is a preview of subscription content, access via your institution.






References
- 1.
Bjontegaard G (2001) Calculation of Average PSNR differences between RD curves. Document ITU-T SG16 Q.6, VCEG Meeting, VCEG-M33, Austin, TX, USA
- 2.
Bjøntegaard G (2008) Improvements of the BD-PSNR model. VCEG-AI11, input document of the 35th VCEG meeting
- 3.
Bossen F, Boyce J, Li X, Seregin V and Sühring K (2019) “JVET common test conditions and software reference configurations for SDR video,” JVET-N1010, Geneva, CH
- 4.
Bross B, Chen J, Liu S (2018) Versatile Video Coding (Draft 3),” in the 12th meeting of Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, document no. JVET-L1001, Macao, China,
- 5.
Bross B, Chen J, Liu S (2019) Versatile video coding (Draft 4). Doc. JVET-M1001
- 6.
Chen C, Chuang T (2018) Cel-related: Separate tree partitioning at 64x64-luma/32x32-chroma unit level. 11th JVET Meeting: Ljubljana, SI
- 7.
Chen J, Chien WJ, Karczewicz M, Li X, Liu H, Said A, Zhang L, Zhao X (2015) Further improvements to HMKTA-1.0. ITU-T SG16/Q6, Doc. VCEG-AZ07, 52nd Meeting
- 8.
Chen J, Alshina E, Sullivan GJ, Ohm JR, Boyce J (2016) “Algorithm description of Joint Exploration Test Model 4 (JEM4),” Joint Video Exploration Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, Doc. JVET-C1001, 3rd Meeting, Geneva, May
- 9.
Chen C-C, Xiu X, He Y, Ye Y (2016) EE3: Generalized bi-prediction. JVET-D0102, Input Docum 4th JVET Meet
- 10.
Fan Y, Chen J, Sun H, Katto J, Jing M (2020) A Fast QTMT Partition Decision Strategy for VVC Intra Prediction. In: IEEE Access, vol 8, pp 107900–107911
- 11.
Feng Z, Liu P, Jia K, Duan K (2018) HEVC Fast Intra Coding Based CTU Depth Range Prediction. In: Proceedings of 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), Chongqing, pp 551–555
- 12.
Fu T, Zhang H, Mu F, Chen H (2019) Fast CU Partitioning Algorithm for H.266/VVC Intra-Frame Coding. In: Proceedings of 2019 IEEE international conference on multimedia and Expo (ICME), Shanghai, China, vol 60, p 55
- 13.
Fu T, Zhang H, Mu F, Chen H (2019) Two-Stage Fast Multiple Transform Selection Algorithm for VVC Intra Coding. In: Proceedings of 2019 IEEE international conference on multimedia and expo (ICME), pp 61–66
- 14.
He Y (2019) BoG report on CE2 related contributions. Doc. JVET-M0862
- 15.
Huang X, Zhang Q, Zhao X, Zhang W, Zhang Y, Gan Y (2017) Fast inter-prediction mode decision algorithm for HEVC. SIViP 11(1):33–40
- 16.
Huang Y, Hsu C, Chen C, Chuang T (2020) A VVC Proposal with Quaternary Tree plus Binary-Ternary Tree Coding Block Structure and Advanced Coding Techniques In: IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 5, pp. 1311–1325
- 17.
Li X, Bossen F, Boyce J , Shring K and Seregin V (2018) “JVET common test conditions and software reference configurations for SDR video,” document JVET-K1010, 11th JVET meeting: Ljubljana, SI
- 18.
Lim K, Lee J, Kim S, Lee S (2015) Fast PU Skip and Split Termination Algorithm for HEVC Intra Prediction. IEEE Trans. Circuits Syst Video Technol 25(8):1335–1346
- 19.
Lin T, Jiang H, Huang J, Chang P (2018) Fast Binary Tree Partition Decision in H.266/FVC Intra Coding,” in Proceedings of 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Taichung, pp. 1–2
- 20.
Lin T, Jiang H, Huang J (2020) Fast intra coding unit partition decision in H.266/FVC based on spatial features. J Real-Time Image Proc 17(3):493–510
- 21.
Liu S, Brass B, Chen J (2018) “Versatile video coding (draft2),” 11th JVET Meeting: Ljubljana, SI 22:1649–1668
- 22.
Min B, Cheung, RCC 2015 “A Fast CU Size Decision Algorithm for the HEVC Intra Encoder,” In: IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 5, pp. 892–896.
- 23.
Park S, Kang J (2019) Context-based ternary tree decision method in versatile video coding for fast intra coding. IEEE Access 7:172597–172605
- 24.
Ramezanpour M, Zargari F (2015) Early termination algorithm for CU size decision in HEVC intra coding. In: Proceedings of 2015 9th Iranian conference on machine vision and image processing (MVIP), Tehran, pp 45–48
- 25.
Shen L, Zhang Z, An P (2013) Fast CU size decision and mode decision algorithm for HEVC intra coding. IEEE Trans Consumer Electron 59(1):207–213
- 26.
Sullivan GJ, Ohm J, Han W, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 22(12):1649–1668
- 27.
“The vvc test model 1”, https://jvet.hhi.fraunhofer.de/svn/svn_VVCSoftware_ VTM/tags/VTM-1.0, [Online].
- 28.
VTM-6.0, https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/tags/VTM-6.0.
- 29.
Yang H, Shen L, Dong X, Ding Q, An P , Jiang G (2020) “Low complexity CTU partition structure decision and fast intra mode decision for versatile video coding,” in IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 6, pp. 1668-1682
- 30.
Zhang Q, Li N, Huang L, Gan Y (2014) Effective early termination algorithm for depth map intra coding in 3D-HEVC. Electron Lett 50(14):994–996
- 31.
Zhang Q, Wu Q, Wang X, Gan Y (2014) Early SKIP mode decision for three-dimensional high efficiency video coding using spatial and interview correlations. J Electron Imag 23(5):053017–1–053017-8
- 32.
Zhang Q, Chen M, Huang X, Li N, Gan Y (2015) Low-complexity depth map compression in HEVC-based 3D video coding. Eurasip J Image Video Process 2015(1):1–14
- 33.
Zhang Q, Wang X, Huang X, Su R, Gan Y (2015) Fast mode decision algorithm for 3D-HEVC encoding optimization based on depth information. Digital Signal Process 44(9):37–46
- 34.
Zhang Q, Wang Y, Huang L, Jiang B (2020) Fast CU Partition and Intra Mode Decision Method for H.266/VVC. In: IEEE Access, vol 8, pp 117539–117550
- 35.
Zhang Q, Wang Y, Huang L, Jiang B, Wang X (2020) Fast CU partition decision for H.266/VVC based on the improved DAG-SVM classifier model. Multimedia Systems
Acknowledgments
This work was supported in part by the National Natural Science Foundation of China No. 61771432, 61302118, 61773018, 61702464, and 61803346, the Basic Research Projects of Education Department of Henan No. 21zx003, and 20A880004, and the Key Research and Development Program of Henan No. 202102210179.
Author information
Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, Q., Wang, Y., Jiang, B. et al. Adaptive CU partition and early skip mode detection for H.266/VVC. Multimed Tools Appl (2021). https://doi.org/10.1007/s11042-020-10252-6
Received:
Revised:
Accepted:
Published:
Keywords
- H.266/VVC
- Adaptive CU decision
- Early skip
- Intra prediction