Novel spatial and temporal interpolation algorithms based on extended field intensity model with applications for sparse AQI

Abstract

For the sparsely distributed air quality index (AQI), existing techniques have low efficiency to interpolate the value of a non-given point. Thus an extended field intensity model (EFIM) is proposed based on the Coulomb’s law. Single parameter based EFIM is designed for spatial and temporal interpolations, and parameter c is used to control the attenuation of field intensity, while binary search method is adopted to calculate the optimal c. Next double parameters based EFIM is designed, and parameter k is added to control the range of influence, while iterative bilinear interpolation method is used to compute the optimal set of c and k. Then spatio-temporal interpolation is provided using spatial and temporal information simultaneously. The monitored AQIs from 4 cities of China are randomly collected as experiment data. Taking RMSE, AME, AEE as evaluation criterions and using 10-fold cross-validation, the new EFIM based algorithms perform better for spatial interpolation of sparse AQI than current methods, while double parameters based EFIM algorithms have higher precision than single parameter. Temporal related EFIM algorithms are also tested for their efficiency, and the normalized absolute error is defined to help indicate when spatio-temporal interpolation should be used. As a new approach for interpolation of sparse samples, our EFIM and algorithms have potential application in related fields.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Ali A, Ikpehai A, Adebisi B, Mihaylova L (2016) Location prediction optimization in WSNs using Kriging interpolation. IET Wireless Sensor Systems 6(3):74–81

    Article  Google Scholar 

  2. 2.

    Aliaga RJ (2017) Real-time estimation of zero crossings of sampled signals for timing using cubic spline interpolation. IEEE Trans Nucl Sci 64(8):2414–2422

    Google Scholar 

  3. 3.

    Antonello N, Sena ED, Moonen M, Naylor PA, Waterschoot T (2017) Room impulse response interpolation using a sparse Spatio-temporal representation of the sound field. IEEE/ACM Transactions on Audio, Speech, and Language Processing 25(10):1929–1941

    Article  Google Scholar 

  4. 4.

    Athawale T, Entezari A (2013) Uncertainty quantification in linear interpolation for Isosurface extraction. IEEE Trans Vis Comput Graph 19(12):2723–2732

    Article  Google Scholar 

  5. 5.

    Bae JH, Kang BS, Kim KT, Yang E (2015) Performance of sparse recovery algorithms for the reconstruction of radar images from incomplete RCS data. IEEE Geosci Remote Sens Lett 12(4):860–864

    Article  Google Scholar 

  6. 6.

    Bhattacharjee S, Mitra P, Ghosh SK (2014) Spatial interpolation to predict missing attributes in GIS using semantic Kriging. IEEE Trans Geosci Remote Sens 52(8):4771–4780

    Article  Google Scholar 

  7. 7.

    Cafaro M, Pellè P (2018) Space-efficient verifiable secret sharing using polynomial interpolation. IEEE Transactions on Cloud Computing 6(2):453–463

    Article  Google Scholar 

  8. 8.

    Chaudhari S, Kosunen M, Mäkinen S, Ramanathan C, Oksanen J, Laatta M, Ryynänen J, Koivunen V, Valkama M (2018) Spatial interpolation of Cyclostationary test statistics in cognitive radio networks: methods and field measurements. IEEE Trans Veh Technol 67(2):1113–1129

    Article  Google Scholar 

  9. 9.

    Chen JM, Deng F, Chen M (2006) Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter. IEEE Trans Geosci Remote Sens 44(8):2230–2238

    MathSciNet  Article  Google Scholar 

  10. 10.

    Chen X, Fei C, Gu C, Mittra R (2017) Efficient technique for broadband monostatic RCS using the characteristic basis function method with polynomial interpolation. Electron Lett 53(14):956–958

    Article  Google Scholar 

  11. 11.

    Emigh MS, Kriminger EG, Brockmeier AJ, Príncipe JC, Pardalos PM (2016) Reinforcement learning in video games using nearest neighbor interpolation and metric learning. IEEE Transactions on Computational Intelligence and AI in Games 8(1):56–66

    Article  Google Scholar 

  12. 12.

    Gerber F, Jong R, Schaepman ME, Schaepman-Strub G, Furrer R (2018) Predicting missing values in Spatio-temporal remote sensing data. IEEE Trans Geosci Remote Sens 56(5):2841–2853

    Article  Google Scholar 

  13. 13.

    Huang CH, Chang CY (2016) An area and power efficient adder-based stepwise linear interpolation for digital signal processing. IEEE Trans Consum Electron 62(1):69–75

    Article  Google Scholar 

  14. 14.

    Huang Y, Zhang J, Liu QH (2011) Three-dimensional GPR ray tracing based on Wavefront expansion with irregular cells. IEEE Trans Geosci Remote Sens 49(2):679–687

    Article  Google Scholar 

  15. 15.

    Khlopenkov KV, Trishchenko AP (2008) Implementation and evaluation of concurrent gradient search method for Reprojection of MODIS level 1B imagery. IEEE Trans Geosci Remote Sens 46(7):2016–2027

    Article  Google Scholar 

  16. 16.

    Kim H, Cha Y, Kim S (2011) Curvature interpolation method for image zooming. IEEE Trans Image Process 20(7):1895–1903

    MathSciNet  Article  Google Scholar 

  17. 17.

    Li J, Song L, Liu C (2018) The cubic trigonometric automatic interpolation spline. IEEE/CAA Journal of Automatica Sinica 5(6):1136–1141

    MathSciNet  Article  Google Scholar 

  18. 18.

    Luo W, Taylor MC, Parker SR (2008) A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. Int J Climatol 28:947–959

    Article  Google Scholar 

  19. 19.

    Micheli L, Deceglie MG, Muller M (2019) Mapping photovoltaic soiling using spatial interpolation techniques. IEEE Journal of Photovoltaics 9(1):272–277

    Article  Google Scholar 

  20. 20.

    Oteros J, Bergmann KC, Menzel A, Damialis A, Traidl-Hoffmann C, Schmidt-Weber CB, Buters J (2019) Spatial interpolation of current airborne pollen concentrations where no monitoring exists. Atmos Environ 199:435–442

    Article  Google Scholar 

  21. 21.

    Piazza A, Conti F, Noto LV, Viola F, Loggia G (2011) Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. Int J Appl Earth Obs Geoinf 13:396–408

    Article  Google Scholar 

  22. 22.

    Pino-Povedano S, Bousoño-Calzón C, González-Serrano FJ (2016) Radial basis function interpolation for signal-model-independent localization. IEEE Sensors J 16(7):2028–2035

    Article  Google Scholar 

  23. 23.

    Santana TAA, Andrade HD, Queiroz Júnior IS, Tavares da Silva IB (2017) Comparison of spatial interpolation methods to determine exposure ratio to electric fields in urban environments. Electron Lett 53(18):1250–1252

    Article  Google Scholar 

  24. 24.

    Shen Q, Wang Y, Wang X, Liu X, Zhang X, Zhang S (2019) Comparing interpolation methods to predict soil total phosphorus in the Mollisol area of Northeast China. Catena 174:59–72

    Article  Google Scholar 

  25. 25.

    Taherkhani F, Jamzad M (2018) Restoring highly corrupted images by impulse noise using radial basis functions interpolation. IET Image Process 12(1):20–30

    Article  Google Scholar 

  26. 26.

    Tang L, Hossain F (2011) Understanding the dynamics of transfer of satellite rainfall error metrics from gauged to Ungauged satellite Gridboxes using interpolation methods. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 4(4):844–856

    Article  Google Scholar 

  27. 27.

    Tang M, Wu X, Agrawal P, Pongpaichet S, Jain R (2017) Integration of diverse data sources for spatial PM2.5 data interpolation. IEEE Transactions on Multimedia 19(2):408–417

    Article  Google Scholar 

  28. 28.

    Tomar V, Mandal VP, Srivastava P, Patairiya S, Singh K, Ravisankar N, Subash N, Kumar P (2014) Rice equivalent crop yield assessment using MODIS sensors based MOD13A1-NDVI data. IEEE Sensors J 14(10):3599–3605

    Article  Google Scholar 

  29. 29.

    Wan X, Liu S, Chen JX, Jin X (2012) Geodesic distance-based realistic facial animation using RBF interpolation. Computing in Science & Engineering 14(5):49–55

    Article  Google Scholar 

  30. 30.

    Wang Q, Atkinson PM, Shi W (2015) Fast subpixel mapping algorithms for subpixel resolution change detection. IEEE Trans Geosci Remote Sens 53(4):1692–1706

    Article  Google Scholar 

  31. 31.

    Wang D, Lu H, Xiao Z, Yang MH (2015) Inverse sparse tracker with a locally weighted distance metric. IEEE Trans Image Process 24(9):2646–2657

    MathSciNet  Article  Google Scholar 

  32. 32.

    Wang P, Wang L, Chanussot J (2016) Soft-then-hard subpixel land cover mapping based on spatial-spectral interpolation. IEEE Geosci Remote Sens Lett 13(12):1851–1854

    Article  Google Scholar 

  33. 33.

    Whited B, Rossignac J (2011) Ball-morph: definition, implementation, and comparative evaluation. IEEE Trans Vis Comput Graph 17(6):757–769

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianhui Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, B., Shi, Z. & Zhao, J. Novel spatial and temporal interpolation algorithms based on extended field intensity model with applications for sparse AQI. Multimed Tools Appl (2021). https://doi.org/10.1007/s11042-020-10226-8

Download citation

Keywords

  • Air quality index
  • Coulomb’s law
  • Extended field intensity model
  • Interpolation algorithm