L*a*b* color space high capacity steganography utilizing quad-trees

Abstract

There has always been a trade-off between embedding capacity and stego quality, and due to this, current research in image steganography suffers either from low embedding capacity in order to preserve high stego image quality, or from sacrificing the stego quality for higher capacity. This paper proposes a steganography scheme that aims to achieve high embedding capacity while preserving stego image quality. The proposed approach utilizes a quad-tree segmentation process to partition the spatial domain of the cover image into high correlation and low correlation adaptive-size blocks. Embedding takes place in the high frequency regions of the discrete cosine transform domain of the highly correlated cover image blocks. Moreover, the L*a*b* color space is utilized for improving the stego image quality. Comparative results demonstrate how the proposed steganography scheme exceeds similar techniques in terms of payload capacity and stego quality using several performance measures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Abdulla AA (2015) Exploiting similarities between secret and cover images for improved embedding efficiency and security in digital steganography. Ph.D. dissertation, University of Buckingham

  2. 2.

    Abdulla AA, Sellahewa H, Jassim SA (2014) Stego quality enhancement by message size reduction and fibonacci bit-plane mapping. In: International Conference on Research in Security Standardisation. Springer, pp 151–166

  3. 3.

    Ahmed N, Natarajan T, Rao KR (1974) Discrete cosine transform. IEEE Trans Comput 100(1):90–93

    MathSciNet  Article  Google Scholar 

  4. 4.

    Anderson RJ, Petitcolas FA (1998) On the limits of steganography. IEEE J Sel Areas Commun 16(4):474–481

    Article  Google Scholar 

  5. 5.

    Balasubramanian C, Selvakumar S, Geetha S (2014) High payload image steganography with reduced distortion using octonary pixel pairing scheme. Multimed Tools Appl 73(3):2223–2245

    Article  Google Scholar 

  6. 6.

    Baziyad M, Rabie T, Kamel I (2018) Extending steganography payload capacity using the l* a* b* color space. In: 2018 International Conference on Innovations in Information Technology (IIT). IEEE, pp 1–6

  7. 7.

    Bracamonte J, Ansorge M, Pellandini F, Farine P-A (2004) Low complexity image matching in the compressed domain by using the dct-phase. In: Proceedings of the 6th COST 276 Workshop on Information and Knowledge Management for Integrated Media Communication, vol 267, no. 6. COST (European Cooperation in the field of Scientific and Technical Research), pp 88–93

  8. 8.

    Bracamonte J, Ansorge M, Pellandini F, Farine P-A (2005) Efficient compressed domain target image search and retrieval. In: International Conference on Image and Video Retrieval. Springer, pp 154–163

  9. 9.

    Brisbane G, Safavi-Naini R, Ogunbona P (2005) High-capacity steganography using a shared colour palette. IEE Proc-Vis Image Signal Process 152(6):787–792

    Article  Google Scholar 

  10. 10.

    Chen W-Y, Chen C-H, et al. (2003) Public-key image steganography using discrete cosine transform and quadtree partition vector quantization coding. Opt Eng 42(10):2886–2892

    MathSciNet  Article  Google Scholar 

  11. 11.

    Ebrahimpour-Komleh H, Chandran V, Sridharan S (2001) Face recognition using fractal codes. In: Proceedings 2001 International Conference on Image Processing (Cat. No. 01CH37205), vol 3. IEEE, pp 58–61

  12. 12.

    Kanan HR, Nazeri B (2014) A novel image steganography scheme with high embedding capacity and tunable visual image quality based on a genetic algorithm. Expert Syst Appl 41(14):6123–6130

    Article  Google Scholar 

  13. 13.

    Lee Y-K, Chen L-H (2000) High capacity image steganographic model, IEE Proceedings-Vision. Image Signal Process 147(3):288–294

    Article  Google Scholar 

  14. 14.

    Lin C-C, Shiu P-F (2010) High capacity data hiding scheme for dct-based images. J Inf Hiding Multimed Signal Process 1(3):220–240

    Google Scholar 

  15. 15.

    Mozaffari S, Faez K, Ziaratban M (2005) Character representation and recognition using quad tree-based fractal encoding scheme. In: Eighth International Conference on Document Analysis and Recognition (ICDAR’05). IEEE, pp 819–823

  16. 16.

    Pinoli J-C, Debayle J (2007) Logarithmic adaptive neighborhood image processing (lanip): introduction, connections to human brightness perception, and application issues. EURASIP J Appl Signal Process 2007(1):114–114

    MATH  Google Scholar 

  17. 17.

    Qin C, Chang C-C, Chiu Y-P (2014) A novel joint data-hiding and compression scheme based on smvq and image inpainting. IEEE Trans Image Process 23(3):969–978

    MathSciNet  Article  Google Scholar 

  18. 18.

    Qin C, Chang C-C, Hsu T-J (2015) Reversible data hiding scheme based on exploiting modification direction with two steganographic images. Multimed Tools Appl 74(15):5861–5872

    Article  Google Scholar 

  19. 19.

    Rabie T, Kamel I (2016) On the embedding limits of the discrete cosine transform. Multimed Tools Appl 75(10):5939–5957

    Article  Google Scholar 

  20. 20.

    Rabie T, Kamel I (2017) High-capacity steganography: a global-adaptive-region discrete cosine transform approach. Multimed Tools Appl 76(5):6473–6493

    Article  Google Scholar 

  21. 21.

    Rabie T, Kamel I (2017) Toward optimal embedding capacity for transform domain steganography: a quad-tree adaptive-region approach. Multimed Tools Appl 76 (6):8627–8650

    Article  Google Scholar 

  22. 22.

    Rabie T, Baziyad M, Kamel I (2018) Enhanced high capacity image steganography using discrete wavelet transform and the laplacian pyramid. Multimed Tools Appl 77(18):23,673–23,698

    Article  Google Scholar 

  23. 23.

    Rabie T, Kamel I, Baziyad M (2018) Maximizing embedding capacity and stego quality: curve-fitting in the transform domain. Multimed Tools Appl 77(7):8295–8326

    Article  Google Scholar 

  24. 24.

    Rabie T, Baziyad M, Bonny T, Fareh R (2020) Toward a unified performance metric for benchmarking steganography systems. Journal of Circuits, Systems and Computers 29(3)

  25. 25.

    Schanda J (2007) Colorimetry: understanding the CIE system. Wiley, New York

  26. 26.

    Sedighi V, Fridrich J, Cogranne R (2015) Content-adaptive pentary steganography using the multivariate generalized gaussian cover model. In: Media Watermarking, Security, and Forensics 2015, vol. 9409. International Society for Optics and Photonics, pp 94090H

  27. 27.

    Sedighi V, Cogranne R, Fridrich J (2016) Content-adaptive steganography by minimizing statistical detectability. IEEE Trans Inf Forensic Secur 11(2):221–234

    Article  Google Scholar 

  28. 28.

    Song W-J, Pearlman WA (1988) Edge-preserving noise filtering based on adaptive windowing. IEEE Trans Circ Syst 35(8):1048–1055

    Article  Google Scholar 

  29. 29.

    Swain G, Lenka SK (2014) Classification of image steganography techniques in spatial domain: a study. Int J Comput Sci Eng Technol 5(3):219–232

    Google Scholar 

  30. 30.

    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13 (4):600–612

    Article  Google Scholar 

  31. 31.

    Wang X, Yao T, Li C-T (2005) A palette-based image steganographic method using colour quantisation. In: IEEE International Conference on Image Processing 2005, vol 2. IEEE, pp II–1090

  32. 32.

    Yang B, Schmucker M, Funk W, Busch C, Sun S (2004) Integer dct-based reversible watermarking for images using companding technique. In: Security, steganography, and watermarking of multimedia contents VI, vol. 5306. International Society for Optics and Photonics, pp 405–416

  33. 33.

    Zhang L, Zhang L, Mou X, Zhang D (2011) Fsim: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nour Mohamed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohamed, N., Baziyad, M., Rabie, T. et al. L*a*b* color space high capacity steganography utilizing quad-trees. Multimed Tools Appl (2020). https://doi.org/10.1007/s11042-020-09129-5

Download citation

Keywords

  • Steganography
  • Data hiding
  • L*a*b* color space
  • Quad-tree segmentation
  • Discrete cosine transform
  • Embedding capacity
  • Imperceptibility