Fast Iris localization using Haar-like features and AdaBoost algorithm

Abstract

Traditional iris recognition methods, which are still preferred against artificial intelligence (AI) approaches in practical applications, are often required to capture high-grade iris samples by an iris scanner for accurate subsequent processing. To reduce the system cost for mass deployment of iris recognition, pricey scan devices can be replaced by the average quality cameras combined with additional processing algorithm. In this paper, we propose a Haar-like-feature-based iris localization method to quickly detect the location of human iris in the images captured by low-cost cameras for the ease of post-processing stages. The AdaBoost algorithm was chosen as a learning method for training a cascade classifier using Haar-like features, which was then utilized to detect the iris position. The experimental results have shown acceptable accuracy and processing speed for this novel cascade classifier. This achievement stimulates us to implement this novel capturing device in our iris recognition.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Attaran N, Puranik A, Brooks J, Mohsenin T (2018) Embedded low-power processor for personalized stress detection. IEEE Trans Circuits Syst II Express Briefs 65(12):2032–2036

    Article  Google Scholar 

  2. 2.

    Baek S, Choi K, Ma C, Kim Y, Ko S (2013) Eyeball model-based iris center localization for visible image-based eye-gaze tracking systems. IEEE Trans Consum Electron 59(2):415–421

    Article  Google Scholar 

  3. 3.

    Burghardt T, Calic J (2006) Analyzing animal behaviour in wildlife videos using face detection and tracking. IEEE Proc - Vis Image Signal Process 153(3):305–312

    Article  Google Scholar 

  4. 4.

    Dasgupta A, George A, Happy S, Routray A (2013) A vision-based system for monitoring the loss of attention in automotive drivers. IEEE Trans Intell Transp Syst 14(4):1825–1838

    Article  Google Scholar 

  5. 5.

    Daugman JG (2004) How iris recognition works. IEEE Trans Circuits Syst Video Technol 14(1):21–30

    Article  Google Scholar 

  6. 6.

    Daugman JG (2007) New methods in iris recognition. IEEE Trans Syst Man Cybern B Cybern 37(5):1167–1175

    Article  Google Scholar 

  7. 7.

    Dong Y, Zhang Y, Yue J, Hu Z (2016) Comparison of random forest, random ferns and support vector machine for eye state classification. Multimed Tools Appl 75(19):11763–11783

    Article  Google Scholar 

  8. 8.

    Ge J, Luo Y, Tei T (2009) Real-time pedestrian detection and tracking at nighttime for driver-assistance systems. IEEE Trans Intell Transp Syst 10(2):283–298

    Article  Google Scholar 

  9. 9.

    Genovese M, Napoli E (2014) ASIC and FPGA implementation of the Gaussian mixture model algorithm for real-time segmentation of high definition video. IEEE Trans Very Large Scale Integr VLSI Syst 22(3):537–547

    Article  Google Scholar 

  10. 10.

    Gualdi G, Prati A, Cucchiara R (2012) Multistage particle windows for fast and accurate object detection. IEEE Trans Pattern Anal Mach Intell 34(8):1589–1604

    Article  Google Scholar 

  11. 11.

    Han Y, Min T, Park R (2015) Efficient iris localization using a guided filter. IET Image Process 9(5):405–412

    Article  Google Scholar 

  12. 12.

    He Z, Tan T, Sun Z, Qiu X (2009) Toward accurate and fast iris segmentation for iris biometrics. IEEE Trans Pattern Anal Mach Intell 31(9):1670–1684

    Article  Google Scholar 

  13. 13.

    Hiromoto M, Sugano H, Miyamoto R (2009) Partially parallel architecture for AdaBoost-based detection with Haar-like features. IEEE Trans Circuits Syst Video Technol 19(1):41–52

    Article  Google Scholar 

  14. 14.

    Ke R, Li Z, Tang J, Pan Z, Wang Y (2019) Real-time traffic flow parameter estimation from UAV video based on ensemble classifier and optical flow. IEEE Trans Intell Transp Syst 20(1):54–64

    Article  Google Scholar 

  15. 15.

    Kim S, Sim J, Yang S (2012) Vision-based cleaning area control for cleaning robots. IEEE Trans Consum Electron 58(2):685–690

    Article  Google Scholar 

  16. 16.

    Lienhart R, Maydt J (2002) An extended set of Haar-like features for rapid object detection, in Proceedings of International Conference on Image Processing, pp. 11–16.

  17. 17.

    Luo A, An F, Zhang X, Mattausch HJ (2019) A hardware-efficient recognition accelerator using Haar-like feature and SVM classifier. IEEE Access 7:14472–14487

    Article  Google Scholar 

  18. 18.

    Ma Z, Liu Y, Liu X, Ma J, Ren K (2019) Lightweight privacy-preserving ensemble classification for face recognition. IEEE Internet Things J 6(3):5778–5790

    Article  Google Scholar 

  19. 19.

    Mammeri A, Zhou D, Boukerche A (2016) Animal–vehicle collision mitigation system for automated vehicles. Anim Collis Mitig Syst Autom Veh 46(9):1287–1299

    Google Scholar 

  20. 20.

    Morra J, Tu Z, Apostolova L, Green A, Toga A, Thompson P (2010) Comparison of AdaBoost and support vector machines for detecting Alzheimer’s disease through automated hippocampal segmentation. IEEE Trans Med Imaging 29(1):30–43

    Article  Google Scholar 

  21. 21.

    Paisitkriangkrai S, Shen S, Zhang J (2008) Fast pedestrian detection using a cascade of boosted covariance features. IEEE Trans Circuits Syst Video Technol 18(8):1140–1151

    Article  Google Scholar 

  22. 22.

    Prioletti A, Møgelmose A, Grisleri P, Trivedi M, Broggi A, Moeslund T (2013) Part-based pedestrian detection and feature-based tracking for driver assistance: real-time, robust algorithms, and evaluation. IEEE Trans Intell Transp Syst 14(3):1346–1359

    Article  Google Scholar 

  23. 23.

    Rezaei M, Klette R (2011) Simultaneous analysis of driver behavior and road condition for driver distraction detection. Int J Image Data Fusion 2(3):217–236

    Article  Google Scholar 

  24. 24.

    Rezaei M, Terauchi M, Klette R (2015) Robust vehicle detection and distance estimation under challenging lighting conditions. IEEE Trans Intell Transp Syst 16(5):2723–2743

    Article  Google Scholar 

  25. 25.

    Song M, Tao D, Sun Z, Li X (2010) Visual-context boosting for eye detection. IEEE Trans Syst Man Cybern Part B Cybern 40(6):1460–1467

    Article  Google Scholar 

  26. 26.

    Tan C, Kumar A (2012) Unified framework for automated iris segmentation using distantly acquired face images. IEEE Trans Image Process 21(9):4068–4079

    Article  Google Scholar 

  27. 27.

    Viola P, Jones M (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154

    Article  Google Scholar 

  28. 28.

    Viola P, Jones M, Snow D (2005) Detecting pedestrians using patterns of motion and appearance. Int J Comput Vis 63(2):153–161

    Article  Google Scholar 

  29. 29.

    Wang S, Lee H (2007) A cascade framework for a real-time statistical plate recognition system. IEEE Trans Inf Forensics Secur 2(2):267–282

    Article  Google Scholar 

  30. 30.

    Wang Z, Li C, Shao H, Sun J (2018) Eye recognition with mixed convolutional and residual network. IEEE Access 6:17905–17912

    Article  Google Scholar 

  31. 31.

    Wen X, Shao L, Fang W, Xue Y (2015) Efficient feature selection and classification for vehicle detection. IEEE Trans Circuits Syst Video Technol 25(3):508–517

    Article  Google Scholar 

  32. 32.

    Xiang X, Ning L, Zhai M, Saddik A (2017) Real-time parking occupancy detection for gas stations based on Haar-AdaBoosting and CNN. IEEE Sensors J 17(19):6360–6367

    Article  Google Scholar 

  33. 33.

    Xu J, Wu Q, Zhang J, Tang Z (2012) Fast and accurate human detection using a cascade of boosted MS-LBP features. IEEE Signal Process Lett 19(10):676–679

    Article  Google Scholar 

  34. 34.

    Yu Y, Ai H, He X, Yu S, Zhong X, Lu M (2018) Ship detection in optical satellite images using Haar-like features and periphery-cropped neural networks. IEEE Access 6:71122–71131

    Article  Google Scholar 

  35. 35.

    Yuan F, Fang Z, Wu S, Yang Y, Fang Y (2015) Real-time image smoke detection using staircase searching-based dual threshold AdaBoost and dynamic analysis. IET Image Process 9(10):849–856

    Article  Google Scholar 

  36. 36.

    Zhang W, Sun J, Tang W (2011) From tiger to panda: animal head detection. IEEE Trans Image Process 20(6):1696–1708

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous reviewers for their constructive comments which have improved the quality of this paper. Also, this work was supported by the Ministry of Science and Technology, Taiwan, under grant MOST 107-2221-E-845-001-MY3 and MOST 107-2221-E-845- 002-MY3.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Victor R. L. Shen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Hsieh, T., Huang, J. et al. Fast Iris localization using Haar-like features and AdaBoost algorithm. Multimed Tools Appl (2020). https://doi.org/10.1007/s11042-020-08907-5

Download citation

Keywords

  • Object detection
  • Iris localization
  • Haar-like features
  • AdaBoost algorithm
  • Cascade classifier