6-DOF motion blur synthesis and performance evaluation of light field deblurring

Abstract

Motion deblurring is essential for reconstructing sharp images from given a blurry input caused by the camera motion. The complexity of this problem increases in a light field due to its depth-dependent blur constraint. A method of generating synthetic 3 degree-of-freedom (3-DOF) translation blur on a light field image without camera rotation has been introduced. In this study, we generate a camera translation and rotation (6-DOF) motion blur model that preserves the consistency of the light field image. Our experiment results show that the proposed blur model can maintain the parallax information (depth-dependent blur) in a light field image. Furthermore, we produce a synthetic blurry light field dataset based on the 6-DOF model. Finally, to validate the usability of the synthetic dataset, we conduct extensive benchmarking using state-of-the-art motion deblurring algorithms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Notes

  1. 1.

    https://goo.gl/tLupM7

References

  1. 1.

    Bok Y, Jeon HG, Kweon IS (2017) Geometric calibration of micro-lense-based light field cameras using line features. IEEE Trans Pattern Anal Mach Intell 39 (2):287–300

    Article  Google Scholar 

  2. 2.

    Chandramouli P, Jin M, Perrone D, Favaro P (2018) Plenoptic image motion deblurring. IEEE Trans Image Process 27(4):1723–1734

    MathSciNet  Article  Google Scholar 

  3. 3.

    Cho D, Lee M, Kim S, Tai YW (2013) Modeling the calibration pipeline of the lytro camera for high quality light-field image reconstruction. In: Proc of IEEE International Conference on Computer Vision, pp 3280–3287

  4. 4.

    Cho S, Lee S (2009) Fast motion deblurring. ACM Trans Graph (TOG) 28 (5):145

    Article  Google Scholar 

  5. 5.

    Dansereau DG, Eriksson A, Leitner J (2017) Richardson-Lucy deblurring for moving light field cameras. In: Proc of IEEE Conference on Computer Vision and Pattern Recognition Workshop, pp 70–81

  6. 6.

    Dansereau DG, Pizarro O, Williams SB (2013) Decoding, calibration and rectification for lenselet-based plenoptic cameras. InL Proc of IEEE Conference on Computer Vision and Pattern Recognition, pp 1027–1034

  7. 7.

    Honauer K, Johannsen O, Kondermann D, Goldluecke B (2016) A dataset and evaluation methodology for depth estimation on 4D light fields. In: Asian Conference on Computer Vision, pp 19–34

    Google Scholar 

  8. 8.

    Jin M, Chandramouli P, Favaro P (2015) Bilayer blind deconvolution with the light field camera. In: Proc of IEEE International Conference on Computer Vision Workshops, pp 10–18

  9. 9.

    Joshi N, Kang SB, Zitnick CL, Szeliski R (2010) Image deblurring using inertial measurement sensors. ACM Trans Graph 29(4):30

    Article  Google Scholar 

  10. 10.

    Kalantari NK, Wang TC, Ramamoorthi R (2016) Learning-based view synthesis for light field cameras. ACM Transactions on Graphics 35(6):193

    Article  Google Scholar 

  11. 11.

    Köhler R, Hirsch M, Mohlder B, Schölkopf B, Harmeling S (2012) Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database. In: Proc of European Conference on Computer Vision, pp 27–40

    Google Scholar 

  12. 12.

    Krishnan D, Tay T, Fergus R (2011) Blind deconvolution using a normalized sparsity measure. In: Proc of IEEE Conference on Computer Vision and Pattern Recognition, pp 233—-240

  13. 13.

    Lai WS, Huang JB, Hu Z, Ahuja N, Yang MH (2016) A comparative study for single image blind deblurring. In: Proc of IEEE Conference on Computer Vision and Pattern Recognition, pp 1701–1709

  14. 14.

    Lee D, Park H, Park IK, Lee KM (2018) Joint blind motion deblurring and depth estimation of light field. In: Proc of European Conference on Computer Vision

  15. 15.

    Levin A, Fergus R, Durand F, Freeman WT (2007) Image and depth from a conventional camera with a coded aperture. ACM Trans Graph 26(3):70

    Article  Google Scholar 

  16. 16.

    Light field toolbox for Matlab v0.4. https://bit.ly/2JptsOT

  17. 17.

    Lytro. The Lytro camera. http://www.lytro.com/

  18. 18.

    Mahesh Mohan M, Rajagopalan A (2018) Divide and conquer for full-resolution light field deblurring. In: Proc of the IEEE Conference on Computer Vision and Pattern Recognition, pp 6421–6429

  19. 19.

    Pan J, Hu Z, Su Z, Yang MH (2014) Deblurring text images via L 0-regularized intensity and gradient prior. In: Proc of IEEE Conference on Computer Vision and Pattern Recognition, pp 2901–2908

  20. 20.

    Pan J, Sun D, Pfister H, Yang MH (2016) Blind image deblurring using dark channel prior. In: Proc of IEEE Conference on Computer Vision and Pattern Recognition, pp 1628–1636

  21. 21.

    Sellent A, Rother C, Roth S (2016) Stereo video deblurring. In: Proc of IEEE European Conference on Computer Vision, pp 558–575

    Google Scholar 

  22. 22.

    Srinivasan PP, Ng R, Ramamoorthi R (2017) Light field blind motion deblurring. In: Proc of IEEE Conference on Computer Vision and Pattern Recognition, pp 3958–3966

  23. 23.

    Srinivasan PP, Wang T, Sreelal A, Ng R (2017) Learning to synthesize a 4D RGBD light field from a single image. In: Proc of IEEE International Conference on Computer Vision, pp 2262–2270

  24. 24.

    Tai YW, Tan P, Brown MS (2011) Richardson-lucy deblurring for scenes under a projective motion path. IEEE Trans Pattern Anal Mach Intell 33(8):1603–1618

    Article  Google Scholar 

  25. 25.

    The (New) Stanford Light Field Archive. http://lightfield.stanford.edu/lfs.html

  26. 26.

    Wang TC, Efros A, Ramamoorthi R (2016) Depth estimation with occlusion modeling using light-field cameras. IEEE Trans Pattern Anal Mach Intell 38 (11):2170–2181

    Article  Google Scholar 

  27. 27.

    Whyte O, Sivic J, Zisserman A, Ponce J (2010) Non-uniform deblurring for shaken images. In: Proc of IEEE Conference on Computer Vision and Pattern Recognition, 2, pp 168–186

  28. 28.

    Whyte O, Sivic J, Zisserman A, Ponce J (2012) Non-uniform deblurring for shaken images. Int J Comput Vis 98:157–170

    MathSciNet  Article  Google Scholar 

  29. 29.

    Williem W, Park IK, Lee KM (2018) Robust light field depth estimation using occlusion-noise aware data costs. IEEE Trans Pattern Anal Mach Intell 40(10):2484–2497

    Article  Google Scholar 

  30. 30.

    Xu L, Jia J (2010) Two-phase kernel estimation for robust motion deblurring. In: Proc of European Conference on Computer Vision, pp 157–170

    Google Scholar 

  31. 31.

    Xu L, Jia J (2012) Depth-aware motion deblurring. In: Proc of IEEE International Conference on Computational Photography, pp 1–8

  32. 32.

    Xu L, Zheng S, Jia J (2013) Unnatural L 0 sparse representation for natural image deblurring. In: Proc of IEEE Conference on Computer Vision and Pattern Recognition, pp 1107–1114

  33. 33.

    Yan C, Li L, Zhang C, Liu B, Zhang Y, Dai Q (2019) Cross-modality bridging and knowledge transferring for image understanding. IEEE Trans on Multimedia

Download references

Acknowledgment

This work was supported by Inha University Research Grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to In Kyu Park.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lumentut, J.S., Williem & Park, I.K. 6-DOF motion blur synthesis and performance evaluation of light field deblurring. Multimed Tools Appl 78, 33723–33746 (2019). https://doi.org/10.1007/s11042-019-08030-0

Download citation

Keywords

  • Light field
  • 6-DOF
  • Synthetic blur
  • Motion blur
  • Deblur