Speckle denoising in optical coherence tomography images using residual deep convolutional neural network

Abstract

Optical Coherence Tomography (OCT) is an emerging imaging modality used for diagnosis of ocular diseases like age-related macular degeneration (AMD) and macular edema. OCT imaging is a non-invasive technique to capture cross-sectional volumes of the retinal areas of human eye. Due to coherent nature of image acquisition process, OCT images suffer from granular multiplicative speckle noise. Presence of speckle noise in OCT images makes its clinical analysis difficult for the experts. The same is the problem with the development of computer aided diagnosis (CAD) systems for detection of ocular diseases. Speckle noise is granular in nature and interferes with the diagnostic observations made using OCT images and the segmentation of different OCT layers. This work presents an efficient OCT denoising technique using residual convolutional neural network. The proposed technique will not only help experts in analysis of OCT images, but can also act as first step to construct CAD systems for ocular diseases. The performance of the proposed approach is evaluated on Duke (SD-OCT) and Topcon (3D-OCT) image databases based on visual and parametric observations. The performance of the proposed method on parameters like PSNR, SSIM, MSR, CNR, and ENL is compared with the state-of-the-art speckle denoising methods. It is observed that the proposed approach performs better as compared to the methods referred from literature on both visual and parametric evaluations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Adabi S, Rashedi E, Clayton A, Mohebbi-Kalkhoran H, Chen X-W, Conforto S, Nasiriavanaki M (2018) Learnable despeckling framework for optical coherence tomography images. J Biomed Opt 23(1):016013

    Article  Google Scholar 

  2. 2.

    Adhi M, Duker J S (2013) Optical coherence tomography–current and future applications. Curr Opin Ophthalmol 24(3):213

    Article  Google Scholar 

  3. 3.

    Adiga VS, Sivaswamy J (2018) Shared encoder based denoising of optical coherence tomography images. In: Proceedings of 11th Indian conference on computer vision, graphics and image processing (ICVGIP’18), ACM

  4. 4.

    Avanaki M R, Cernat R, Tadrous P J, Tatla T, Podoleanu A G, Hojjatoleslami S A (2013) Spatial compounding algorithm for speckle reduction of dynamic focus oct images. IEEE Photon Technol Lett 25(15):1439–1442

    Article  Google Scholar 

  5. 5.

    Bernardes R, Maduro C, Serranho P, Araújo A, Barbeiro S, Cunha-Vaz J (2010) Improved adaptive complex diffusion despeckling filter. Opt Express 18 (23):24048–24059

    Article  Google Scholar 

  6. 6.

    Boyat A K, Joshi BK A review paper: noise models in digital image processing. arXiv:1505.03489

  7. 7.

    Chen Y, Pock T (2017) Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration. IEEE Trans Pattern Anal Mach Intell 39(6):1256–1272

    Article  Google Scholar 

  8. 8.

    Chong B, Zhu Y-K (2013) Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified bm3d filter. Opt Commun 291:461–469

    Article  Google Scholar 

  9. 9.

    Chong G T, Farsiu S, Freedman S F, Sarin N, Koreishi A F, Izatt J A, Toth C A (2009) Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography. Arch Ophthalmol 127(1):37–44

    Article  Google Scholar 

  10. 10.

    Cincotti G, Loi G, Pappalardo M (2001) Frequency decomposition and compounding of ultrasound medical images with wavelet packets. IEEE Trans Med Imaging 20(8):764–771

    Article  Google Scholar 

  11. 11.

    Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans Image Process 16 (8):2080–2095

    MathSciNet  Article  Google Scholar 

  12. 12.

    Du Y, Liu G, Feng G, Chen Z (2014) Speckle reduction in optical coherence tomography images based on wave atoms. J Biomed Opt 19(5):056009

    Article  Google Scholar 

  13. 13.

    Du Y, Liu G, Feng G, Chen Z (2014) Speckle reduction in optical coherence tomography images based on wave atoms. J Biomed Opt 19(5):056009

    Article  Google Scholar 

  14. 14.

    Dubey S D (1970) Compound gamma, beta and f distributions. Metrika 16 (1):27–31

    MathSciNet  MATH  Article  Google Scholar 

  15. 15.

    Duker J S, Waheed N K, Goldman D (2013) Handbook of retinal OCT: optical coherence tomography, Elsevier Health Sciences

  16. 16.

    Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745

    MathSciNet  Article  Google Scholar 

  17. 17.

    Fang L, Li S, Nie Q, Izatt J A, Toth C A, Farsiu S (2012) Sparsity based denoising of spectral domain optical coherence tomography images. Biomed Opt Express 3(5):927–942

    Article  Google Scholar 

  18. 18.

    Fang L, Li S, Nie Q, Izatt J A, Toth C A, Farsiu S (2012) Sparsity based denoising of spectral domain optical coherence tomography images. Biomed Opt Expres 3(5):927–942

    Article  Google Scholar 

  19. 19.

    Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning, vol 1. MIT Press, Cambridge

    Google Scholar 

  20. 20.

    Goodman J W (1976) Some fundamental properties of speckle. JOSA 66 (11):1145–1150

    Article  Google Scholar 

  21. 21.

    He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  22. 22.

    Hore A, Ziou D (2010) Image quality metrics: Psnr vs. ssim. In: 2010 20th international conference on pattern recognition (icpr), IEEE, pp 2366–2369

  23. 23.

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A et al (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Article  Google Scholar 

  24. 24.

    Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167

  25. 25.

    Isar CS-CA (2015) Optical coherence tomography speckle reduction in the wavelets domain, the Scientific Bulletin of the Politehnica University of Timisoara-Transactions on Electronics and Communications 60(74), 3–7

  26. 26.

    Jain V, Seung S (2009) Natural image denoising with convolutional networks. In: Advances in neural information processing systems, pp 769–776

  27. 27.

    Jiao J, Tu W-C, He S, Lau R W (2017) Formresnet: formatted residual learning for image restoration. In: 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW). IEEE, pp 1034–1042

  28. 28.

    Kafieh R, Rabbani H, Selesnick I (2015) Three dimensional data-driven multi scale atomic representation of optical coherence tomography. IEEE Trans Med Imaging 34(5):1042–1062

    Article  Google Scholar 

  29. 29.

    Krizhevsky A, Sutskever I, Hinton G E (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  30. 30.

    Kuan D, Sawchuk A, Strand T, Chavel P (1987) Adaptive restoration of images with speckle. IEEE Trans Acoust Speech Signal Process 35(3):373–383

    Article  Google Scholar 

  31. 31.

    Kumar N, Nachamai M (2017) Noise removal and filtering techniques used in medical images, Oriental Journal of Computer Science & Tachnology, 103–113

  32. 32.

    LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  33. 33.

    Lee J-S, Jurkevich L, Dewaele P, Wambacq P, Oosterlinck A (1994) Speckle filtering of synthetic aperture radar images: A review. Remote Sens Rev 8(4):313–340

    Article  Google Scholar 

  34. 34.

    Li M, Idoughi R, Choudhury B, Heidrich W (2017) Statistical model for oct image denoising. Biomed Opt Expres 8(9):3903–3917

    Article  Google Scholar 

  35. 35.

    Lopes A, Nezry E, Touzi R, Laur H (1993) Structure detection and statistical adaptive speckle filtering in sar images. Int J Remote Sens 14(9):1735–1758

    Article  Google Scholar 

  36. 36.

    Loupas T, McDicken W, Allan P L (1989) An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Trans Circuits Syst 36(1):129–135

    Article  Google Scholar 

  37. 37.

    Mayer M A, Borsdorf A, Wagner M, Hornegger J, Mardin C Y, Tornow R P (2012) Wavelet denoising of multiframe optical coherence tomography data. Biomed Opt Expres 3(3):572–589

    Article  Google Scholar 

  38. 38.

    Murakami T, Ogawa K (2018) Speckle noise reduction of optical coherence tomography images with a wavelet transform. In: 2018 IEEE 14th international colloquium on signal processing & its applications (CSPA), IEEE, pp 31–34

  39. 39.

    Pircher M, Götzinger E, Leitgeb R A, Fercher A F, Hitzenberger C K (2003) Speckle reduction in optical coherence tomography by frequency compounding. J Biomed Opt 8(3):565–570

    Article  Google Scholar 

  40. 40.

    Pircher M, Hitzenberger C K, Schmidt-Erfurth U (2011) Polarization sensitive optical coherence tomography in the human eye. Prog Retin Eye Res 30(6):431–451

    Article  Google Scholar 

  41. 41.

    Puvanathasan P, Bizheva K (2009) Interval type-ii fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images. Opt Express 17(2):733–746

    Article  Google Scholar 

  42. 42.

    Schmidt U, Roth S (2014) Shrinkage fields for effective image restoration. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2774–2781

  43. 43.

    Schmitt J M, Xiang S, Yung K M (1999) Speckle in optical coherence tomography. J Biomed Opt 4(1):95–106

    Article  Google Scholar 

  44. 44.

    Selesnick I W (2004) The double-density dual-tree dwt. IEEE Trans Signal Process 52(5):1304–1314

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Simonyan K, Zisserman A Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  46. 46.

    Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

  47. 47.

    Tawse KL, Hedges TR, Gobuty M, Mendoza-Santiesteban C (2014) Optical coherence tomography shows retinal abnormalities associated with optic nerve disease. Br J Ophthalmol 98(2):ii30–ii33

    Article  Google Scholar 

  48. 48.

    Thakur I, Kansal M A review on noise reduction from medical images 03 (06)

  49. 49.

    Thomas M G, Kumar A, Mohammad S, Proudlock F A, Engle E C, Andrews C, Chan W-M, Thomas S, Gottlob I (2011) Structural grading of foveal hypoplasia using spectral-domain optical coherence tomography: a predictor of visual acuity?. Ophthalmology 118(8):1653–1660

    Article  Google Scholar 

  50. 50.

    Wang H, Rollins AM (2009) Speckle reduction in optical coherence tomography using angular compounding by b-scan doppler-shift encoding. J Biomed Opt 14(3):030512

    Article  Google Scholar 

  51. 51.

    Wang S-H, Lv Y-D, Sui Y, Liu S, Wang S-J, Zhang Y-D (2018) Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling. J Med Syst 42(1):2

    Article  Google Scholar 

  52. 52.

    Wang Z, Bovik A C, Sheikh H R, Simoncelli E P (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13 (4):600–612

    Article  Google Scholar 

  53. 53.

    Wong A, Mishra A, Bizheva K, Clausi D A (2010) General bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery. Opt Express 18(8):8338–8352

    Article  Google Scholar 

  54. 54.

    Xia S, Huang Y, Peng S, Wu Y, Tan X (2016) Adaptive anisotropic diffusion for noise reduction of phase images in fourier domain doppler optical coherence tomography. Biomed Opt Expres 7(8):2912–2926

    Article  Google Scholar 

  55. 55.

    Yu Y, Acton S T (2002) Speckle reducing anisotropic diffusion. IEEE Trans Image Process 11(11):1260–1270

    MathSciNet  Article  Google Scholar 

  56. 56.

    Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans Image Process 26(7):3142–3155

    MathSciNet  MATH  Article  Google Scholar 

  57. 57.

    Zhang Y, Pfeiffer T, Weller M, Wieser W, Huber R, Raczkowsky J, Schipper J, Wörn H, Klenzner T (2014) Optical coherence tomography guided laser cochleostomy: Towards the accuracy on tens of micrometer scale, BioMed research international

  58. 58.

    Zhang Y-D, Muhammad K, Tang C (2018) Twelve-layer deep convolutional neural network with stochastic pooling for tea category classification on gpu platform. Multimed Tools Appl 77(17):22821–22839

    Article  Google Scholar 

  59. 59.

    Zoran D, Weiss Y (2011) From learning models of natural image patches to whole image restoration. In: 2011 IEEE international conference on computer vision (ICCV). IEEE, pp 479–486

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Neha Gour.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gour, N., Khanna, P. Speckle denoising in optical coherence tomography images using residual deep convolutional neural network. Multimed Tools Appl 79, 15679–15695 (2020). https://doi.org/10.1007/s11042-019-07999-y

Download citation

Keywords

  • Speckle denoising
  • Optical coherence tomography
  • Convolutional neural network
  • Residual network
  • Ocular disease diagnosis