Skip to main content
Log in

Visualization of (multimedia) dependencies from big data

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Data dependencies represent one of the key metadata to characterize and profile multimedia and big data sources. With respect to traditional databases, in these new contexts it has been necessary to introduce some approximations in the definition of dependencies. This yields a proliferation of dependencies, which makes it difficult for a user to effectively analyze them. To this end, in this paper we present a technique for ranking and visualizing dependencies holding on big and multimedia data. A qualitative evaluation has highlighted the advantages of the proposed visualization metaphors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://www.uniprot.org/uniprot/

References

  1. Abedjan Z, Schulze P, Naumann F (2014) DFD: efficient functional dependency discovery. In: Proc. Int. Conf. on information and Knowl. Management (CIKM), pp 949–958

  2. Abedjan Z, Golab L, Naumann F (2015) Profiling relational data: a survey. VLDB J 24(4):557–581

    Article  Google Scholar 

  3. Arenas M, Libkin L (2004) A normal form for XML documents. ACM Trans Database Syst 29(1):195–232

    Article  Google Scholar 

  4. Blake CL, Merz CJ (1998) UCI repository of machine learning databases. https://archive.ics.uci.edu/ml/index.php

  5. Bobrov N, Birillo A, Chernishev G (2017) A survey of database dependency concepts. In: Chernishev G, Akhin M, Novikov B, Itsykson V (eds) Proceedings of the 2nd conference on software engineering and information management, no. 1864 in CEUR Workshop Proceedings. Saint Petersburg

  6. Bohannon P, Fan W, Geerts F, Jia X, Kementsietsidis A (2007) Conditional functional dependencies for data cleaning. In: Proc. of the 25th international conference on data engineering, ICDE ’07, pp 746–755

  7. Carpendale S (2008) Information visualization. In: Kerren A, Stasko JT, Fekete JD, North C (eds) Information visualization, chap. Evaluating information visualizations. Springer, Berlin, pp 19–45

  8. Caruccio L (2018) Relaxed functional dependencies: definition, discovery and applications. Ph.D. thesis, University of Salerno

  9. Caruccio L, Deufemia V, Polese G (2016) On the discovery of relaxed functional dependencies. In: Proceedings of the 20th international database engineering & applications symposium, IDEAS ’16, pp 53–61

  10. Caruccio L, Deufemia V, Polese G (2016) Relaxed functional dependencies – a survey of approaches. IEEE Trans Knowl Data Eng 28(1):147–165

    Article  Google Scholar 

  11. Caruccio L, Deufemia V, Polese G (2017) Evolutionary mining of relaxed dependencies from big data collections. In: Proceedings of the 7th international conference on web intelligence, mining and semantics, WIMS 2017, Amantea, Italy, June 19-22, 2017, pp 5:1–5:10

  12. Chang SK, Deufemia V, Polese G, Vacca M (2007) A normalization framework for multimedia databases. IEEE Trans Knowl Data Eng 19(12):1666–1679

    Article  Google Scholar 

  13. Chen F, Chiu P, Lim S (2016) Topic modeling of document metadata for visualizing collaborations over time. In: Proceedings of the 21st international conference on intelligent user interfaces, IUI ’16, pp 108–117

  14. Chen W, Xie C, Shang P, Peng Q (2017) Visual analysis of user-driven association rule mining. J Vis Lang Comput 42:76–85

    Article  Google Scholar 

  15. Chiang F, Miller RJ (2008) Discovering data quality rules. Proc VLDB Endow 1(1):1166–1177

    Article  Google Scholar 

  16. Fan W, Geerts F, Lakshmanan LVS, Xiong M (2009) Discovering conditional functional dependencies. In: Proc. of the 25th international conference on data engineering, ICDE’09, pp 1231–1234

  17. Fan W, Gao H, Jia X, Li J, Ma S (2011) Dynamic constraints for record matching. VLDB J 20:495–520

    Article  Google Scholar 

  18. Flach PA, Savnik I (1999) Database dependency discovery: a machine learning approach. AI Commun 12(3):139–160

    MathSciNet  Google Scholar 

  19. Gallo G, Longo G, Pallottino S, Nguyen S (1993) Directed hypergraphs and applications. Discret Appl Math 42(2):177–201

    Article  MathSciNet  Google Scholar 

  20. Giannella C, Robertson E (2004) On approximation measures for functional dependencies. Inform Syst 29(6):483–507

    Article  Google Scholar 

  21. Golab L, Karloff H, Korn F, Srivastava D, Yu B (2008) On generating near-optimal tableaux for conditional functional dependencies. PVLDB 1(1):376–390

    Google Scholar 

  22. Hofmann H, Siebes APJM, Wilhelm AFX (2000) Visualizing association rules with interactive mosaic plots. In: Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’00. ACM, pp 227–235

  23. Holten D (2006) Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. IEEE Trans Vis Comput Graph 12(5):741–748

    Article  Google Scholar 

  24. Huhtala Y, Kärkkäinen J, Porkka P, Toivonen H (1998) Efficient discovery of functional and approximate dependencies using partitions. In: ICDE, pp 392–401

  25. Huhtala Y, Kärkkäinen J, Porkka P, Toivonen H (1999) TANE: an efficient algorithm for discovering functional and approximate dependencies. Comput J 42(2):100–111

    Article  Google Scholar 

  26. Ilyas IF, Markl V, Haas P, Brown P, Aboulnaga A (2004) CORDS: automatic discovery of correlations and soft functional dependencies. In: Proc. of the 2004 ACM SIGMOD international conference on management of data, SIGMOD’04, pp 647–658

  27. King R, Oil J (2003) Discovery of functional and approximate functional dependencies in relational databases. J Appl Math Decision Sci 7(1):49–59

    Article  MathSciNet  Google Scholar 

  28. Kivinen J, Mannila H (1995) Approximate inference of functional dependencies from relations. Theor Comput Sci 149(1):129–149

    Article  MathSciNet  Google Scholar 

  29. Kwashie S, Liu J, Li J, Ye F (2014) Mining differential dependencies: a subspace clustering approach. In: Proc. of Australasian database conference (ADC), pp 50–61

    Google Scholar 

  30. Kwashie S, Liu J, Li J, Ye F (2015) Efficient discovery of differential dependencies through association rules mining. In: Proc. of Australasian database conference (ADC), pp 3–15

    Google Scholar 

  31. Lee ML, Ling TW, Low WL (2002) Designing functional dependencies for XML. In: Proc. of the 8th international conference on extending database technology, EDBT ’02, pp 124–141

    Chapter  Google Scholar 

  32. Leung CK, Irani PP, Carmichael CL (2008) Wifisviz: effective visualization of frequent itemsets. In: 2008 eighth IEEE international conference on data mining, pp 875–880

  33. Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions, and reversals. Soviet Phys Doklady 10(8):707–710

    MathSciNet  Google Scholar 

  34. Li J (2006) On optimal rule discovery. IEEE Trans Knowl Data Eng 18(4):460–471

    Article  Google Scholar 

  35. Liu G, Suchitra A, Zhang H, Feng M, Ng SK, Wong L (2012) AssocExplorer: an association rule visualization system for exploratory data analysis. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’12, pp 1536–1539

  36. Liu J, Li J, Liu C, Chen Y (2012) Discover dependencies from data - a review. IEEE Trans Knowl Data Eng 24(2):251–264

    Article  Google Scholar 

  37. Lopes S, Petit JM, Lakhal L (2000) Efficient discovery of functional dependencies and Armstrong relations. In: Proc. Int. Conf. on extending database technology (EDBT), pp 350–364

    Chapter  Google Scholar 

  38. Novelli N, Cicchetti R (2001) FUN: an efficient algorithm for mining functional and embedded dependencies. In: Proc. Int. Conf. on database theory (ICDT), pp 189–203

    Chapter  Google Scholar 

  39. Papenbrock T, Bergmann T, Finke M, Zwiener J, Naumann F (2015) Data profiling with Metanome. Proc VLDB Endow 8(12):1860–1863

    Article  Google Scholar 

  40. Raju KVSVN, Majumdar AK (1988) Fuzzy functional dependencies and lossless join decomposition of fuzzy relational database systems. ACM Trans Database Syst 13 (2):129–166

    Article  Google Scholar 

  41. Sekhavat YA, Hoeber O (2013) Visualizing association rules using linked matrix, graph, and detail views. Int J Internet Sci 3:34–49

    Google Scholar 

  42. Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the 1996 IEEE symposium on visual languages, VL ’96. IEEE, pp 336–343

  43. Shneiderman B, Plaisant C (2006) Strategies for evaluating information visualization tools: Multi-dimensional in-depth long-term case studies. In: Proceedings of the 2006 AVI workshop on beyond time and errors: novel evaluation methods for information visualization, BELIV ’06. ACM, New York, pp 1–7

  44. Song S, Chen L (2011) Differential dependencies: reasoning and discovery. ACM Trans Database Syst 36:16:1–16:41

    Article  Google Scholar 

  45. Song S, Chen L (2013) Efficient discovery of similarity constraints for matching dependencies. Data Knowl Eng (DKE) 87:146–166

    Article  Google Scholar 

  46. Song S, Chen L, Cheng H (2014) Efficient determination of distance thresholds for differential dependencies. IEEE Trans Knowl Data Eng 26(9):2179–2192

    Article  Google Scholar 

  47. Sugibuchi T, Spyratos N, Siminenko E (2009) A framework to analyze information visualization based on the functional data model. In: 13Th international conference information visualisation, pp 18–24

  48. Vassiliev V (1990) Cohomology of knot spaces. Adv Soviet Math: 23–69

  49. Vianu V (1987) Dynamic functional dependencies and database aging. J ACM 34(1):28–59

    Article  MathSciNet  Google Scholar 

  50. Wang Y, Song S, Chen L, Yu JX, Cheng H (2017) Discovering conditional matching rules. ACM Trans Knowl Discov Data (TKDD) 11(4):46

    Google Scholar 

  51. Wyss C, Giannella C, Robertson E (2001) FastFDs: a heuristic-driven, depth-first algorithm for mining functional dependencies from relation instances. In: Proc. Int. Conf. on data warehousing and knowl. Discovery (DaWak), pp 101–110

  52. Xie C, Chen W, Huang X, Hu Y, Barlowe S, Yang J (2014) Vaet: a visual analytics approach for e-transactions time-series. IEEE Trans Vis Comput Graph 20(12):1743–1752

    Article  Google Scholar 

  53. Yao H, Hamilton HJ, Butz CJ (2002) FDMine: discovering functional dependencies in a database using equivalences. In: Proceedings of the international conference on data mining, pp 729–732

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredana Caruccio.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caruccio, L., Deufemia, V. & Polese, G. Visualization of (multimedia) dependencies from big data. Multimed Tools Appl 78, 33151–33167 (2019). https://doi.org/10.1007/s11042-019-07951-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-07951-0

Keywords

Navigation