Skip to main content
Log in

A Turtle Shell based RDH scheme with two-dimensional histogram shifting

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A turtle shell (TS) based reversible data hiding (RDH) scheme with two-dimensional histogram shifting (HS) is proposed. The proposed scheme extends the embeddable set from a peak point in HS scheme to a two-dimensional region, so as to improve the embedding capacity (EC). Firstly, a threshold T is used to divide the pixel-pairs into three groups: left-shifting set without embedding (LSS), right-shifting set without embedding (RSS), and embeddable set (ES). Secondly, pixel-pairs in sets LSS and RSS are shifted outward to vacate room for embedding. Lastly, secret data are embedded into pixel-pairs in set ES. After that, the embedded data can be extracted accurately and the cover image can be recovered losslessly. Furthermore, various requirements of EC can be obtained by adjusting the threshold T. Experimental results verify that this paper can achieve a higher EC than the existing pairwise based schemes while maintaining an acceptable image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Petitcolas FAP, Anderson RJ, Kuhn MG (1999) Information hiding — a survey. Proc IEEE 87(7):1062–1078

    Article  Google Scholar 

  2. Mielikainen J (2006) LSB matching revisited. IEEE Signal Proc Lett 13(5):285–287

    Article  Google Scholar 

  3. Ker AD (2004) Improved detection of LSB steganography in grayscale images. Proc Inform Hiding Workshop 3200:97–115

    Article  Google Scholar 

  4. Zhang X, Wang S (2006) Efficient steganographic embedding by exploiting modification direction. IEEE Commun Lett 10(11):781–783

    Article  Google Scholar 

  5. Kim HJ, Kim C, Choi Y (2010) Improved modification direction methods. Comput MathAppl 60(2):319–325

    MathSciNet  MATH  Google Scholar 

  6. Chang CC, Chou YC, Kieu TD (2008) “An information hiding scheme using Sudoku,” proceedings of the third international conference on innovative computing information and control. Dalian, China, pp 17–22

    Google Scholar 

  7. Chang CC, Liu Y, Nguyen TS (2014) “A novel turtle shell based scheme for data hiding,” intelligent information hiding and multimedia signal processing (IIH-MSP), 2014 tenth international conference on. IEEE. Kitakyushu, Japan, pp 89–93

    Book  Google Scholar 

  8. Liu L, Chang CC, Wang A (2017) Data hiding based on extended turtle shell matrix construction method. Multimed Tools Appl 76(10):12233–12250

    Article  Google Scholar 

  9. Barton JM (1997) “Method and apparatus for embedding authentication information within digital data,” U.S. Patent 5(646):997

    Google Scholar 

  10. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  11. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156

    Article  MathSciNet  Google Scholar 

  12. Lin CC, Yang SP, Hsueh NL (2008) Lossless data hiding based on difference expansion without a location map. In: Proceedings of congress on image and signal processing (CISP '08), pp 8–12

    Google Scholar 

  13. Kim HJ, Sachnev V, Shi YQ, Nam J, Choo HG (2008) A novel difference expansion transform for reversible data embedding. IEEE Trans Inform Forensics Sec 3:456–465

    Article  Google Scholar 

  14. Ni Z, Shi YQ, Ansari N, Wei S (2006) “Reversible data hiding,” IEEE transactions on circuits and Systems for Video. Technology 16(3):354–362

    Google Scholar 

  15. Zhao Z, Luo H, Lu ZM, Pan JS (2011) Reversible data hiding based on multilevel histogram modification and sequential recovery. AEU – Int J Electron Commun 65(10):814–826

    Article  Google Scholar 

  16. Yan Y, Cao W, Li S (2009) High capacity reversible image authentication based on difference image watermarking. Proc IEEE Int Workshop Image Syst Tech:179–182

  17. Li X, Zhang W, Gui X, Yang B (2013) A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans Inform Forensics Sec 8:1091–1110

    Article  Google Scholar 

  18. Hong W, Chen TS, Shiu CW (2009) Reversible data hiding for high quality images using modification of prediction errors. J Syst Softw 82(11):1833–1842

    Article  Google Scholar 

  19. Chen S, Chen X, Fu H (2017) General framework of reversible watermarking based on asymmetric histogram shifting of prediction error. Adv Multimed 2017:1–9

    Article  Google Scholar 

  20. Ou B, Li X, Zhao Y, Ni R, Shi YQ (2013) Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process 22:5010–5021

    Article  MathSciNet  MATH  Google Scholar 

  21. Hsiao JY, Lin ZY, Chen PY (2017) Reversible data hiding based on pairwise prediction-error histogram. J Inform Sci Eng 33(2):289–304

    MathSciNet  Google Scholar 

  22. He W, Xiong G, Weng S et al (2018) Reversible data hiding using multi-pass pixel-value-ordering and pairwise prediction-error expansion. Inf Sci:1–16

  23. Cao F, An B, Yao H et al (2018) Local complexity based adaptive embedding mechanism for reversible data hiding in digital images. Multimed Tools Appl:1–16

  24. Li X, Li B, Yang B, Zeng T (2013) General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process 22(6):2181–2191

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang ZH, Lee CF, Chang CY (2013) Histogram-shifting-imitated reversible data hiding. J Syst Softw 86(2):315–323

    Article  Google Scholar 

  26. Kim PH, Kim DS, Yoo KY (2015) “Improved histogram-shifting-imitated reversible data hiding scheme,” proceedings of information technology-new generations. Las Vegas, USA, pp 668–673

    Google Scholar 

  27. Fridrich J, Goljan M, Du R (2002) Lossless data embedding for all image formats. Sec Watermark Multimed Cont IV 4675:572–583

    MATH  Google Scholar 

  28. Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-LSB data embedding. IEEE Trans Image Process 14(2):253–266

    Article  Google Scholar 

  29. Celik MU, Sharma G, Tekalp AM (2006) Lossless watermarking for image authentication: a new framework and an implementation. IEEE Trans Image Process 15(4):1042–1049

    Article  Google Scholar 

  30. Liu Y, Chang CC (2018) A turtle shell-based visual secret sharing scheme with reversibility and authentication. Multimed Tools Appl 3:1–16

    Google Scholar 

  31. The USC-SIPI Image Database [Online]. Available: http://sipi.usc.edu/database/

Download references

Acknowledgements

This work is supported by Natural Science Foundation of P. R. China under Grant 61503316, Natural Science Foundation of Fujian Province under Grant 2018 J01572 and Open Fund of Engineering Research Center for Software Testing and Evaluation of Fujian Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Chen Lin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, XZ., Chang, CC., Lin, CC. et al. A Turtle Shell based RDH scheme with two-dimensional histogram shifting. Multimed Tools Appl 78, 19413–19436 (2019). https://doi.org/10.1007/s11042-018-7098-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-7098-7

Keywords

Navigation