Advertisement

Multimedia Tools and Applications

, Volume 78, Issue 12, pp 16097–16127 | Cite as

FPGA realization of a speech encryption system based on a generalized modified chaotic transition map and bit permutation

  • Wafaa S. SayedEmail author
  • Mohammed F. Tolba
  • Ahmed G. Radwan
  • Salwa K. Abd-El-Hafiz
Article
  • 142 Downloads

Abstract

This paper proposes a generalized modified chaotic transition map with three independent parameters. A hardware speech encryption scheme utilizing this map along with a bit permutation network is presented. While the transition map’s generalization introduces additional parameters, the modification enhances its chaotic properties and overcomes the finite range of the control parameter and dynamical degradation problems. The modification also presents a simplification for the hardware realization of the exponentiation operation in the map’s equation because the modified output range allows conversion from the linear domain to the Logarithmic Number System (LNS). Mathematical analysis of the map is presented, where exact nonlinear expressions of the dependent parameters are derived and validated through simulations. To further simplify the hardware realization, the complicated nonlinear expressions are linearized and the introduced approximation error is quite acceptable. The encryption scheme is simulated using Xilinx ISE 14.7 and realized on Xilinx Nexys 4 Artix-7 FPGA with a throughput of 1.526 Gbit/sec. The security and efficiency of the hardware speech encryption scheme are validated and the performance is compared with recent works that provided experimental results on Pseudo-Random Number Generation (PRNG) and speech encryption.

Keywords

Anti-log unit Chaos Encryption FPGA Generalized modified transition map Log unit 

Notes

Acknowledgements

This research was supported financially by Cairo University, Egypt, research project no. 16-120.

References

  1. 1.
    The history place - great speeches collection: Ronald reagan speech “tear down this wall” (audio), accessed (2018). http://www.historyplace.com/speeches/reagan-tear-down.htm
  2. 2.
    ITU-T test signals for telecommunication systems, Test vectors associated to Rec. ITU-T P.501, accessed (2018), https://www.itu.int/net/itu-t/sigdb/genaudio/AudioForm-g.aspx?val=10000501
  3. 3.
  4. 4.
    A Al-Juaid N, A Gutub A, A Khan E et al (2018) Enhancing pc data security via combining rsa cryptography and video based steganography. Journal of Information Security and Cybercrimes Research (JISCR) 1(1):8–18Google Scholar
  5. 5.
    Abd-El-Hafiz SK, Radwan AG, AbdEl-Haleem SH (2015) Encryption applications of a generalized chaotic map. Appl Math Inf Sci 9(6):3215MathSciNetGoogle Scholar
  6. 6.
    Alassaf N, Alkazemi B, Gutub A (2003) Applicable light-weight cryptography to secure medical data in iot systems. Journal of Research in Engineering and Applied Sciences (JREAS) 2(2):50–58Google Scholar
  7. 7.
    Alligood KT, Sauer TD, Yorke JA (1996) Chaos: an introduction to dynamical systems. Springer, BerlinCrossRefzbMATHGoogle Scholar
  8. 8.
    Alvarez G, Li S (2006) Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurcation Chaos 16(08):2129–2151MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Azzaz MS, Tanougast C, Sadoudi S, Dandache A (2011) New hardware cryptosystem based chaos for the secure real-time of embedded applications. In: 2011 IEEE workshop on signal processing systems (siPS), pp 251–254. IEEEGoogle Scholar
  10. 10.
    Azzaz MS, Tanougast C, Sadoudi S, Bouridane A (2013) Synchronized hybrid chaotic generators: application to real-time wireless speech encryption. Commun Nonlinear Sci Numer Simul 18(8):2035–2047MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Barakat ML, Mansingka AS, Radwan AG, Salama KN (2013) Generalized hardware post-processing technique for chaos-based pseudorandom number generators. ETRI J 35(3):448–458CrossRefGoogle Scholar
  12. 12.
    de la Fraga LG, Torres-Pérez E, Tlelo-Cuautle E, Mancillas-López C (2017) Hardware implementation of pseudo-random number generators based on chaotic maps. Nonlinear Dyn 90(3):1661–1670CrossRefGoogle Scholar
  13. 13.
    George SN, Augustine N, Pattathil DP (2015) Audio security through compressive sampling and cellular automata. Multimedia Tools Appl 74(23):10393–10417CrossRefGoogle Scholar
  14. 14.
    Gupta B, Agrawal DP, Yamaguchi S (2016) Handbook of research on modern cryptographic solutions for computer and cyber security IGI GlobalGoogle Scholar
  15. 15.
    Gutub A, Ibrahim MK, Araman MA (2004) Super pipelined digit serial adders for multimedia and e-security. In: International computer engineering conference on new technologies for the information society (ICENCO), pp 558–561Google Scholar
  16. 16.
    Gutub A, Tahhan H (2003) Improving cryptographic architectures by adopting efficient adders in their modular multiplication hardware vlsi. In: 9Th annual gulf internet symposiumGoogle Scholar
  17. 17.
    Gutub AAA (2011) Subthreshold sram designs for cryptography security computations. In: International conference on software engineering and computer systems. Springer, pp 104–110Google Scholar
  18. 18.
    Gutub AAA, Khan EA (2011) Using subthreshold sram to design low-power crypto hardware. International Journal of New Computer Architectures and their Applications (IJNCAA) 1(2):474–483Google Scholar
  19. 19.
    Gutub AAA, Khan FAA (2012) Hybrid crypto hardware utilizing symmetric-key and public-key cryptosystems. In: 2012 international conference on Advanced computer science applications and technologies (ACSAT). IEEE, pp 116–121Google Scholar
  20. 20.
    Hamdi M, Rhouma R, Belghith S (2017) An appropriate system for securing real-time voice communication based on adpcm coding and chaotic maps. Multimedia Tools Appl 76(5):7105–7128CrossRefGoogle Scholar
  21. 21.
    Hermassi H, Hamdi M, Rhouma R, Belghith SM (2017) A joint encryption-compression codec for speech signals using the ITU-t g. 711 standard and chaotic map. Multimedia Tools Appl 76(1):1177–1200CrossRefGoogle Scholar
  22. 22.
    Huang Z, Liu S, Mao X, Chen K, Li J (2017) Insight of the protection for data security under selective opening attacks. Inf Sci 412:223–241CrossRefGoogle Scholar
  23. 23.
    Ismail SM, Said LA, Rezk AA, Radwan AG, Madian AH, Abu-Elyazeed MF, Soliman AM (2017) Generalized fractional logistic map encryption system based on FPGA. AEU Int J Electron Commun 80:114–126CrossRefGoogle Scholar
  24. 24.
    Kak SC, Jayant N (1977) On speech encryption using waveform scrambling. Bell Syst Tech J 56(5):781–808CrossRefGoogle Scholar
  25. 25.
    Kim H, Nam BG, Sohn JH, Woo JH, Yoo HJ (2006) A 231-MHz, 2.18-mW 32-bit logarithmic arithmetic unit for fixed-point 3-D graphics system. IEEE J Solid-State Circ 41(11):2373–2381CrossRefGoogle Scholar
  26. 26.
    Klinefelter A, Ryan J, Tschanz J, Calhoun BH (2015) Error-energy analysis of hardware logarithmic approximation methods for low power applications. In: 2015 IEEE International Symposium on Circuits and systems (ISCAS). IEEE, pp 2361–2364Google Scholar
  27. 27.
    Korn GA, Korn TM (2000) Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review Courier CorporationGoogle Scholar
  28. 28.
    Li J, Huang X, Li J, Chen X, Xiang Y (2014) Securely outsourcing attribute-based encryption with checkability. IEEE Trans Parallel Distrib Syst 25 (8):2201–2210CrossRefGoogle Scholar
  29. 29.
    Li J, Li J, Chen X, Jia C, Lou W (2015a) Identity-based encryption with outsourced revocation in cloud computing. IEEE Trans Comput 64(2):425–437MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Li J, Li YK, Chen X, Lee PP, Lou W (2015b) A hybrid cloud approach for secure authorized deduplication. IEEE Trans Parallel Distrib Syst 26(5):1206–1216CrossRefGoogle Scholar
  31. 31.
    Li P, Li J, Huang Z, Li T, Gao CZ, Yiu SM, Chen K (2017) Multi-key privacy-preserving deep learning in cloud computing. Futur Gener Comput Syst 74:76–85CrossRefGoogle Scholar
  32. 32.
    Lian S (2008) Multimedia content encryption: techniques and applications. CRC Press, Boca RatonCrossRefzbMATHGoogle Scholar
  33. 33.
    Lima JB, da Silva Neto EF (2016) Audio encryption based on the cosine number transform. Multimedia Tools Appl 75(14):8403–8418CrossRefGoogle Scholar
  34. 34.
    Mitchell JN (1962) Computer multiplication and division using binary logarithms. IRE Transactions on Electronic Computers EC-11(4):512–517MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Mosa E, Messiha NW, Zahran O, El-Samie FEA (2011) Chaotic encryption of speech signals. Int J Speech Technol 14(4):285CrossRefGoogle Scholar
  36. 36.
    Pande A, Zambreno J (2013) A chaotic encryption scheme for real-time embedded systems: design and implementation. Telecommun Syst 52:1–11CrossRefGoogle Scholar
  37. 37.
    Pedre S, Krajník T, Todorovich E, Borensztejn P (2016) Accelerating embedded image processing for real time: a case study. J Real-Time Image Process 11 (2):349–374CrossRefGoogle Scholar
  38. 38.
    Pineiro JA, Ercegovac MD, Bruguera JD (2004) Algorithm and architecture for logarithm, exponential, and powering computation. IEEE Trans Comput 53(9):1085–1096CrossRefGoogle Scholar
  39. 39.
    Radwan AG, Abd-El-Hafiz SK (2013) Image encryption using generalized tent map. In: IEEE 20Th international conference on electronics, circuits, and systems (ICECS). IEEE, pp 653–656Google Scholar
  40. 40.
    Radwan AG, Abd-El-Hafiz SK, AbdElHaleem SH (2014) An image encryption system based on generalized discrete maps. In: IEEE International conference on electronics, circuits and systems (ICECS), 21st. IEEE, pp 283–286Google Scholar
  41. 41.
    Radwan AG, AbdElHaleem SH, Abd-El-Hafiz SK (2015) Symmetric encryption algorithms using chaotic and non-chaotic generators: a review Journal of Advanced ResearchGoogle Scholar
  42. 42.
    Sadr A, Okhovat RS (2015) Security in the speech cryptosystem based on blind sources separation. Multimedia Tools Appl 74(21):9715–9728CrossRefGoogle Scholar
  43. 43.
    Sayed WS, Fahmy HA, Rezk AA, Radwan AG (2017a) Generalized smooth transition map between tent and logistic maps. Int J Bifurcation and Chaos 27 (01):1730004MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Sayed WS, Radwan AG, Fahmy HA (2015a) Design of a generalized bidirectional tent map suitable for encryption applications. In: 11Th international computer engineering conference (ICENCO). IEEE, pp 207–211Google Scholar
  45. 45.
    Sayed WS, Radwan AG, Fahmy HA (2015b) Design of positive, negative, and alternating sign generalized logistic maps. Discret Dyn Nat Soc 2015Google Scholar
  46. 46.
    Sayed WS, Radwan AG, Rezk AA, Fahmy HA (2017b) Finite precision logistic map between computational efficiency and accuracy with encryption applications. Complexity 2017Google Scholar
  47. 47.
    Sheikh F, Mathew SK, Anders MA, Kaul H, Hsu SK, Agarwal A, Krishnamurthy RK, Borkar S (2013) A 2.05 GVertices/s 151 mW lighting accelerator for 3D graphics vertex and pixel shading in 32 nm CMOS. IEEE J Solid-State Circ 48 (1):128–139CrossRefGoogle Scholar
  48. 48.
    Sheu LJ (2011) A speech encryption using fractional chaotic systems. Nonlinear Dyn 65(1):103–108MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Stouraitis T, Paliouras V (2001) Considering the alternatives in low-power design. IEEE Circ Devices Mag 17(4):22–29CrossRefGoogle Scholar
  50. 50.
    Strogatz SH (2014) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, Westview Press, BoulderGoogle Scholar
  51. 51.
    Tolba MF, AbdelAty AM, Soliman NS, Said LA, Madian AH, Azar AT, Radwan AG (2017) FPGA implementation of two fractional order chaotic systems. AEU-Int J Electron Commun 78:162–172CrossRefGoogle Scholar
  52. 52.
    Vaidyanathan S (2013) A new six-term 3-d chaotic system with an exponential nonlinearity. Far East J Math Sci 79(1):135zbMATHGoogle Scholar
  53. 53.
    Yu C, Li J, Li X, Ren X, Gupta B (2018) Four-image encryption scheme based on quaternion fresnel transform, chaos and computer generated hologram. Multimedia Tools Appl 77(4):4585–4608CrossRefGoogle Scholar
  54. 54.
    Zeng L, Zhang X, Chen L, Fan Z, Wang Y (2012) Scrambling-based speech encryption via compressed sensing. EURASIP J Adv Sig Process 2012(1):257CrossRefGoogle Scholar
  55. 55.
    Zhao B, Qi C (2016) Chaotic signal generator design based on discrete system. J Inf Hiding Multimed Sig Process 7(1):50–58MathSciNetGoogle Scholar
  56. 56.
    Zhao H, He S, Chen Z, Zhang X (2014) Dual key speech encryption algorithm based underdetermined BSS. The Scientific World Journal 2014Google Scholar
  57. 57.
    Zidan MA, Radwan AG, Salama KN (2012) Controllable V-shape multiscroll butterfly attractor: system and circuit implementation. Int J Bifurcation Chaos 22(6):125–143CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Engineering Mathematics and Physics Department, Faculty of EngineeringCairo UniversityGizaEgypt
  2. 2.Nanoelectronics Integrated Systems CenterNile UniversityCairoEgypt

Personalised recommendations