Skip to main content
Log in

No-reference image quality assessment using gradient magnitude and wiener filtered wavelet features

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

No-reference image quality assessment (NR-IQA) aims to evaluate the perceived quality of distorted images without prior knowledge of pristine version of the images. The quality score is predicted based on the features extracted from the distorted image, which needs to correlate with the mean opinion score. The prediction of an image quality score becomes a trivial task, if the noise affecting the quality of an image can be modeled. In this paper, gradient magnitude and Wiener filtered discrete wavelet coefficients are utilized for image quality assessment. In order to reconstruct an estimated noise image, Wiener filter is applied to discrete wavelet coefficients. The estimated noise image and the gradient magnitude are modeled as conditional Gaussian random variables. Joint adaptive normalization is applied to the conditional random distribution of the estimated noise image and the gradient magnitude to form a feature vector. The feature vector is used as an input to a pre-trained support vector regression model to predict the image quality score. The proposed NR-IQA is tested on five commonly used image quality assessment databases and shows better performance as compared to the existing NR-IQA techniques. The experimental results show that the proposed technique is robust and has good generalization ability. Moreover, it also shows good performance when training is performed on images from one database and testing is performed on images from another database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bosse S, Maniry D, Müller K-R, Wiegand T, Samek W (2016) Neural network-based full-reference image quality assessment. In: Picture coding symposium (PCS), 2016. IEEE, pp 1–5

  2. Fang Y, Ma K, Wang Z, Lin W, Fang Z, Zhai G (2015) No-reference quality assessment of contrast-distorted images based on natural scene statistics. IEEE Signal Process Lett 22(7):838–842

    Google Scholar 

  3. Ferzli R, Karam LJ (2009) A no-reference objective image sharpness metric based on the notion of just noticeable blur (jnb). IEEE Trans Image Process 18(4):717–728

    Article  MathSciNet  MATH  Google Scholar 

  4. Golestaneh S, Karam LJ (2016) Reduced-reference quality assessment based on the entropy of dwt coefficients of locally weighted gradient magnitudes. IEEE Trans Image Process 25(11):5293–5303

    Article  MathSciNet  MATH  Google Scholar 

  5. Gu K, Zhai G, Yang X, Zhang W (2015) Using free energy principle for blind image quality assessment. IEEE Trans Multimed 17(1):50–63

    Article  Google Scholar 

  6. Guan J, Zhang W, Gu J, Ren H (2015) No-reference blur assessment based on edge modeling. J Vis Commun Image Represent 29:1–7

    Article  Google Scholar 

  7. Heeger DJ (1992) Normalization of cell responses in cat striate cortex. Vis Neurosci 9(2):181–197

    Article  MathSciNet  Google Scholar 

  8. Hore A, Ziou D (2010) Image quality metrics: Psnr vs. ssim. In: 2010 20th international conference on pattern recognition (icpr). IEEE, pp 2366–2369

  9. Huang Y, Chen X, Ding X (2016) A harmonic means pooling strategy for structural similarity index measurement in image quality assessment. Multimed Tools Appl 75(5):2769–2780

    Article  Google Scholar 

  10. Huynh-Thu Q, Ghanbari M (2008) Scope of validity of psnr in image/video quality assessment. Electron Lett 44(13):800–801

    Article  Google Scholar 

  11. Jenadeleh M, Moghaddam ME (2017) Biqws: efficient wakeby modeling of natural scene statistics for blind image quality assessment. Multimed Tools Appl 76(12):13859–13880

    Article  Google Scholar 

  12. Kazubek M (2003) Wavelet domain image denoising by thresholding and wiener filtering. IEEE Signal Process Lett 10(11):324–326

    Article  Google Scholar 

  13. Kerouh F, Serir A (2014) A perceptual blind blur image quality metric. In: 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 2784–2788

  14. Khosravi MH, Hassanpour H (2017) Model-based full reference image blurriness assessment. Multimed Tools Appl 76(2):2733–2747

    Article  Google Scholar 

  15. Kim D-O, Han H-S, Park R-H (2010) Gradient information-based image quality metric, IEEE Trans Consum Electron 56(2):930–936

  16. Kristan M, Perš J, Perše M, Kovačič S (2006) A bayes-spectral-entropy-based measure of camera focus using a discrete cosine transform. Pattern Recognit Lett 27(13):1431–1439

    Article  Google Scholar 

  17. Larson EC, Chandler DM (2010) Most apparent distortion: full-reference image quality assessment and the role of strategy. J Electron Imaging 19(1):011006–011006

    Article  Google Scholar 

  18. Lee D, Plataniotis KN (2016) Toward a no-reference image quality assessment using statistics of perceptual color descriptors. IEEE Trans Image Process 25(8):3875–3889

    Article  MathSciNet  MATH  Google Scholar 

  19. Li C, Bovik AC (2010) Content-partitioned structural similarity index for image quality assessment. Signal Process Image Commun 25(7):517–526

    Article  Google Scholar 

  20. Li Y, Po L-M, Xu X, Feng L, Yuan F, Cheung C-H, Cheung K-W (2015) No-reference image quality assessment with shearlet transform and deep neural networks. Neurocomputing 154:94–109

    Article  Google Scholar 

  21. Li Q, Lin W, Xu J, Fang Y (2016) Blind image quality assessment using statistical structural and luminance features. IEEE Trans Multimedia 18(12):2457–2469

    Article  Google Scholar 

  22. Li J, Zou L, Yan J, Deng D, Qu T, Xie G (2016) No-reference image quality assessment using prewitt magnitude based on convolutional neural networks. Signal Image and Video Process 10(4): 609–616

    Article  Google Scholar 

  23. Liu A, Lin W, Narwaria M (2012) Image quality assessment based on gradient similarity. IEEE Trans Image Process 21(4):1500–1512

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu L, Dong H, Huang H, Bovik AC (2014) No-reference image quality assessment in curvelet domain. Signal Process Image Commun 29(4):494–505

    Article  Google Scholar 

  25. Liu X, Pedersen M, Hardeberg JY (2014) Cid: Iq–a new image quality database. In: International conference on image and signal processing. Springer, pp 193–202

  26. Liu L, Hua Y, Zhao Q, Huang H, Bovik AC (2016) Blind image quality assessment by relative gradient statistics and adaboosting neural network. Signal Process Image Commun 40:1–15

    Article  Google Scholar 

  27. Liu M, Gu K, Zhai G, Le Callet P, Zhang W (2017) Perceptual reduced-reference visual quality assessment for contrast alteration. IEEE Trans Broadcast 63(1):71–81

    Article  Google Scholar 

  28. Liu D, Li F, Song H (2017) Regularity of spectral residual for reduced reference image quality assessment. IET Image Process 11(12):1135–1141

    Article  Google Scholar 

  29. Lu W, Xu T, Ren Y, He L (2016) Statistical modeling in the shearlet domain for blind image quality assessment. Multimed Tools Appl 75(22):14417–14431

    Article  Google Scholar 

  30. Lyu S, Simoncelli EP (2008) Nonlinear image representation using divisive normalization. In: IEEE conference on computer vision and pattern recognition, CVPR 2008. IEEE, pp 1–8

  31. Maalouf A , Larabi M-C (2010) A no reference objective color image sharpness metric. In: 2010 18th European signal processing conference. IEEE, pp 1019–1022

  32. Manap RA, Shao L, Frangi AF (2017) Patch-iq: a patch based learning framework for blind image quality assessment. Inf Sci 420:329–344

    Article  Google Scholar 

  33. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708

    Article  MathSciNet  MATH  Google Scholar 

  34. Mittal A, Soundararajan R, Bovik AC (2013) Making a “completely blind” image quality analyzer. IEEE Signal Process Lett 20(3):209–212

    Article  Google Scholar 

  35. Moorthy AK, Bovik AC (2010) A two-step framework for constructing blind image quality indices. IEEE Signal Process Lett 17(5):513–516

    Article  Google Scholar 

  36. Moorthy AK, Bovik AC (2011) Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans Image Process 20(12):3350–3364

    Article  MathSciNet  MATH  Google Scholar 

  37. Ni Z, Ma L, Zeng H, Chen J, Cai C, Ma K-K (2017) Esim: Edge similarity for screen content image quality assessment. IEEE Trans Image Process 26(10):4818–4831

    Article  MathSciNet  Google Scholar 

  38. Nizami IF, Majid M, Afzal H, Khurshid K (2017) Impact of feature selection algorithms on blind image quality assessment. Arab J Sci Eng 43(8):4057–4070

  39. Nizami IF, Majid M, Khurshid K (2017) Efficient feature selection for blind image quality assessment based on natural scene statistics. In: 2017 14th international bhurban conference on applied sciences and technology (IBCAST). IEEE, pp 318–322

  40. Nizami IF, Majid M, Khurshid K (2018) New feature selection algorithms for no-reference image quality assessment. Appl Intell 48:3482–3501

  41. Omari M, El Hassouni M, Abdelouahad AA, Cherifi H (2015) A statistical reduced-reference method for color image quality assessment. Multimed Tools Appl 74(19):8685–8701

    Article  Google Scholar 

  42. Ponomarenko N, Jin L, Ieremeiev O, Lukin V, Egiazarian K, Astola J, Vozel B, Chehdi K, Carli M, Battisti F et al (2015) Image database tid2013: peculiarities, results and perspectives. Signal Process Image Commun 30:57–77

    Article  Google Scholar 

  43. Ponomarenko N, Lukin V, Zelensky A, Egiazarian K, Carli M, Battisti F (2009) Tid2008-a database for evaluation of full-reference visual quality assessment metrics. Adv Mod Radioelectron 10(4): 30–45

    Google Scholar 

  44. Portilla J, Strela V, Wainwright MJ, Simoncelli EP (2001) Adaptive wiener denoising using a gaussian scale mixture model in the wavelet domain. In: Proceedings 2001 international conference on image processing, vol 2. IEEE, pp 37–40

  45. Rao RP, Olshausen BA, Lewicki MS, Jordan MI, Dietterich TG (eds) (2002) Probabilistic models of the brain: perception and neural function. MIT Press, Cambridge

  46. Rezaie F, Helfroush MS, Danyali H (2017) No-reference image quality assessment using local binary pattern in the wavelet domain. Multimed Tools Appl 77(2):2529–2541

  47. Saad MA, Bovik AC, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the dct domain. IEEE Trans Image Process 21(8):3339–3352

    Article  MathSciNet  MATH  Google Scholar 

  48. Saha A, Wu QJ (2016) Full-reference image quality assessment by combining global and local distortion measures. Signal Process 128:186–197

    Article  Google Scholar 

  49. Sang Q, Qi H, Wu X, Li C, Bovik AC (2014) No-reference image blur index based on singular value curve. J Vis Commun Image Represent 25(7):1625–1630

    Article  Google Scholar 

  50. Serir A, Beghdadi A, Kerouh F (2013) No-reference blur image quality measure based on multiplicative multiresolution decomposition. J Vis Commun Image Represent 24(7):911–925

    Article  Google Scholar 

  51. Sheikh HR, Sabir MF, Bovik AC (2006) A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans Image Process 15(11):3440–3451

    Article  Google Scholar 

  52. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  53. Wang C, Shen M, Yao C (2015) No-reference quality assessment for dct-based compressed image. J Vis Commun Image Represent 28:53–59

    Article  Google Scholar 

  54. Wu J, Lin W, Shi G, Li L, Fang Y (2016) Orientation selectivity based visual pattern for reduced-reference image quality assessment. Inf Sci 351:18–29

    Article  Google Scholar 

  55. Wu J, Xia Z, Li H, Sun K, Gu K, Lu H (2017) No-reference image quality assessment with center-surround based natural scene statistics. Multimed Tools Appl 77:20731–20751

  56. Wu M, Chen L, Tian J (2018) A hybrid learning-based framework for blind image quality assessment. Multidim Syst Sign Process 29(3):839–849

    Article  MathSciNet  Google Scholar 

  57. Xu S, Jiang S, Min W (2017) No-reference/blind image quality assessment: a survey. IETE Tech Rev 34(3):223–245

    Article  Google Scholar 

  58. Xue W, Mou X, Zhang L, Bovik AC, Feng X (2014) Blind image quality assessment using joint statistics of gradient magnitude and laplacian features. IEEE Trans Image Process 23(11):4850–4862

    Article  MathSciNet  MATH  Google Scholar 

  59. Ye P, Kumar J, Kang L, Doermann D (2012) Unsupervised feature learning framework for no-reference image quality assessment. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1098–1105

  60. Yoneyama A, Minamoto T (2015) No-reference image blur assessment in the dwt domain and blurred image classification. In: 2015 12th international conference on information technology-new generations (ITNG). IEEE, pp 329–334

  61. Zhang L, Zhang L, Mou X, Zhang D (2011) Fsim: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhang Y, Moorthy AK, Chandler DM, Bovik AC (2014) C-diivine: no-reference image quality assessment based on local magnitude and phase statistics of natural scenes. Signal Process Image Commun 29(7):725–747

    Article  Google Scholar 

  63. Zhang M, Muramatsu C, Zhou X, Hara T, Fujita H (2015) Blind image quality assessment using the joint statistics of generalized local binary pattern. IEEE Signal Process Lett 22(2):207–210

    Article  Google Scholar 

  64. Zhang L, Zhang L, Bovik AC (2015) A feature-enriched completely blind image quality evaluator. IEEE Trans Image Process 24(8):2579–2591

    Article  MathSciNet  MATH  Google Scholar 

  65. Zhang C, Pan J, Chen S, Wang T, Sun D (2016) No reference image quality assessment using sparse feature representation in two dimensions spatial correlation. Neurocomputing 173:462–470

    Article  Google Scholar 

  66. Zhang Y, Wu J, Xie X, Li L, Shi G (2016) Blind image quality assessment with improved natural scene statistics model. Digital Signal Process 57:56–65

    Article  MathSciNet  Google Scholar 

  67. Zhang Y, Phan TD, Chandler DM (2017) Reduced-reference image quality assessment based on distortion families of local perceived sharpness. Signal Process Image Commun 55:130–145

    Article  Google Scholar 

  68. Zhou W, Yu L, Qiu W, Zhou Y, Wu M (2017) Local gradient patterns (lgp): an effective local-statistical-feature extraction scheme for no-reference image quality assessment. Inf Sci 397:1–14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Majid.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Nizami, I.F. & Majid, M. No-reference image quality assessment using gradient magnitude and wiener filtered wavelet features. Multimed Tools Appl 78, 14485–14509 (2019). https://doi.org/10.1007/s11042-018-6797-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6797-4

Keywords

Navigation