Skip to main content
Log in

A subspace learning-based method for JPEG mismatched steganalysis

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The prevailing steganalysis detector trained by a source is used to recognize images from another different source, the detection accuracy typically drops owing to the mismatch between the two sources. In contrast to previous mismatched steganalysis methods, in this paper, we develop an unsupervised subspace learning-based method which has some differences from the ones common used in mismatched steganalysis. The proposed method employs low-rank and sparse constraints on the reconstruction coefficient matrix to maintain the global and local structures of the data. In this way, we can obtain new feature representations so that the feature distributions of the training and test data are close. We further promote the performance of the proposed method by employing the l2,1-norm on the error matrix. Comprehensive experiments on the JPEG mismatched steganalysis are conducted, and the experimental results show that the proposed method can improve the detection accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. An L, Gao X, Yuan Y, Tao D (2012) Robust lossless data hiding using clustering and statistical quantity histogram. Neurocomputing 77(1):1–11

    Article  Google Scholar 

  2. Bas P, Filler T, Pevný T (2011) Break our steganographic system: the ins and outs of organizing BOSS. Int. Workshop Inf. Hiding Springer Berlin Heidelberg 96 (454):488–499

    Google Scholar 

  3. Blitzer J, McDonald R, Pereira F (2006) Domain adaptation with structural correspondence learning. In: Proceedings of Conference on empirical methods in natural language processing, pp 120–128

  4. Borgwardt KM, Gretton A, Rasch MJ, Kriegel HP, Schölkopf B, Smola AJ (2006) Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14):e49–e57

    Article  Google Scholar 

  5. Cai J, Candès EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM. J Optimization 20(4):1956–1982

    MathSciNet  MATH  Google Scholar 

  6. Denemark TD, Boroumand M, Fridrich J (2017) Steganalysis features for Content-Adaptive JPEG steganography. IEEE Trans Inf Forensic Secur 11(8):1736–1746

    Article  Google Scholar 

  7. Feng C, Kong X, Yang Y, Li M, Guo Y (2017) Contribution-based feature transfer for JPEG mismatched steganalysis. In: Proceedings of International Conference on Image Processing (ICIP). IEEE, pp 500–504

  8. Fridrich J (2004) Feature-based steganalysis for JPEG images and its implications for future design of steganographic schemes. In: Proceedings of Inf. hiding, LNCS, Toronto, May, pp 67–81

    Chapter  Google Scholar 

  9. Fridrich J, Pevný T, Kodovsky J (2007) Statistically undetectable jpeg steganography: dead ends challenges, and opportunities. In: Proceedings of 9th workshop on multimedia and security. ACM, pp 3–14

  10. Fridrich J, Kodovský J, Holub V, Goljian M (2011) Steganalysis of content-adaptive steganography in spatial domain. In: Proceeding of information hiding workshop. ACM, pp 102–117

  11. Fridrich J, Kodovský J (2012) Rich model for steganalysis of digital images. IEEE Trans Inf Forensic Secur 7(3):868–882

    Article  Google Scholar 

  12. Goljan M, Fridrich J, Cogranne R (2015) Rich model for Steganalysis of color images. In: Proceeding of IEEE International Workshop on Information Forensics and Security (WIFS), pp 185–190

  13. Gong B, Shi Y, Sha F, Grauman K (2012) Geodesic flow kernel for unsupervised domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 2066–2073

  14. Gopalan R, Li R, Chellappa R (2011) Domain adaptation for object recognition: an unsupervised approach. In: IEEE International Conference on Computer Vision (ICCV). IEEE, pp 999–1006

  15. Guo L, Ni J, Shi YQ (2013) An efficient JPEG steganographic scheme using uniform embedding. In: Proceedings of IEEE International Workshop on Information Forensics and Security (WIFS), pp 169–174

  16. Holub V, Fridrich J, Denemark T (2014) Universal distortion function for steganography in an arbitrary domain. EURASIP. J Inf Secur 2014(1):1–13

    Google Scholar 

  17. Holub V, Fridrich J (2015) Low complexity features for JPEG steganalysis using undecimated DCT. IEEE Trans Inf Forensic Secur 10(2):219–228

    Article  Google Scholar 

  18. Jhuo I-H, Liu D, Lee DT, Chang S-F (2012) Robust visual domain adaptation with low-rank reconstruction. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp 2168–2175

  19. Johnson NF, Katzenbeisser SC (2000) A survey of steganographic techniques. In: Information Hiding, pp 43–78

  20. Jung K-H, Yoo K-Y (2015) Steganographic method based on interpolation and LSB substitution of digital images. Multimed Tools Appl 74(6):2143–2155

    Article  Google Scholar 

  21. Ker AD, Pevný T (2014) A mishmash of methods for mitigating the model mismatch mess. Media watermarking, security, and forensics. Int Soc Opt Photon 9028 (1):79–85

    Google Scholar 

  22. Kodovský J, Fridrich J (2009) Calibration revisited. In: Proceedings of the 11th ACM Multimedia and Security Workshop. ACM, pp 63–74

  23. Kodovský J, Fridrich J, Holub V (2012) Ensemble classifiers for steganalysis of digital media. IEEE Trans Inf Forensic Secur 7(2):432–444

    Article  Google Scholar 

  24. Kodovský J, Fridrich J (2012) Steganalysis of JPEG images using rich models. In: Proceedings of SPIE media watermarking, security, and forensics, pp 1–13

  25. Kodovský J, Sedighi V, Fridrich J (2014) Study of cover source mismatch in steganalysis and ways to mitigate its impact. Media watermarking, security, and forensics. Int Soc Opt Photon 9028(2):96–101

    Google Scholar 

  26. Kong X, Feng C, Li M, Guo Y (2016) Iterative multi-order feature alignment for JPEG mismatched steganalysis. Neurocomputing 214:458–470

    Article  Google Scholar 

  27. Li X, Kong X, Wang B, Guo Y, You X (2013) Generalized transfer component analysis for mismatched JPEG steganalysis. In: Proceedings of International Conference on Image Processing (ICIP). IEEE, pp 4432–4436

  28. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  29. Liu Y, Hu M, Ma X, Zhao H (2015) A new robust data hiding method for h. 264/AVC without intra-frame distortion drift. Neurocomputing 151(3):1076–1085

    Article  Google Scholar 

  30. Lubenko I, Ker AD (2012) Steganalysis with mismatched covers: do simple classifiers help?. In: Proceedings of ACM Multimedia and Security Workshop (MMSec). ACM, pp 11–18

  31. Luo X, Song X, Li X, Zhang W, Lu J, Yang C, Liu F (2016) Steganalysis of HUGO steganography based on parameter recognition of syndrome-trellis-codes. Multimed Tools Appl 75(21):13557–13583

    Article  Google Scholar 

  32. Ma Y, Luo X, Li X, Bao Z, Zhang Y (2018) Selection of rich model steganalysis features based on decision rough set α-positive region reduction. IEEE transactions on circuits and systems for video technology, online, https://doi.org/10.1109/TCSVT.2018.2799243

  33. Modaghegh H, Seyedin SA (2015) A new fast and efficient active steganalysis based on combined geometrical blind source separation. Multimed Tools Appl 74(15):5825–5843

    Article  Google Scholar 

  34. Mukherjee S, Sanyal G (2018) A chaos based image steganographic system. Multimed Tools Appl 3:1–26

  35. Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  36. Pevný T, Fridrich J (2007) Merging Markov and DCT features for multi-class jpeg steganalysis. In: Proceedings of SPIE security, steganography, and watermarking of multimedia contents, pp 1–13

  37. Pevný T, Fridrich J (2008) Novelty detection in blind steganalysis. In: Proceedings of ACM Multimedia and Security Workshop (MMSec). ACM, pp 167–176

  38. Rabee AM, Mohamed MH, Mahdy YB (2018) Blind JPEG steganalysis based on DCT coefficients differences. Multimed Tools Appl 77(6):7763–7777

    Article  Google Scholar 

  39. Sajed H (2017) Adaptive image steganalysis. Multimed Tools Appl 2:1–16

  40. Shao L, Zhu F, Li X (2015) Transfer learning for visual categorization: A survey. IEEE Trans Neural Netw Learn Syst 26(5):1019–1034

    Article  MathSciNet  Google Scholar 

  41. Song X, Liu F, Yang C, Luo X, Zhang Y (2015) Steganalysis of adaptive JPEG steganography using 2D Gabor filters. In: Proceedings of the 3rd ACM workshop on information hiding and multimedia security. ACM, pp 15–23

  42. Wang S, Wang H (2004) Cyber warfare: steganography vs. steganalysis. Commun Acm 47(10):76–82

    Article  Google Scholar 

  43. Wang C, Mahadevan S (2011) Heterogeneous domain adaptation using manifold alignment. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI). ACM, pp 1541–1546

  44. Xia C, Guan Q, Zhao X, Xu Z, Ma Y (2017) Improving GFR steganalysis features by using gabor symmetry and weighted histograms. In: Proceedings of the 5th ACM workshop on information hiding and multimedia security. ACM, pp 55–66

  45. Xu Y, Fang X, Wu J, Li X, Zhang D (2016) Discriminative transfer subspace learning via Low-Rank and sparse representation. IEEE Trans Images Process 25(2):850–863

    Article  MathSciNet  Google Scholar 

  46. Yang J, Yin W, Zhang Y, Wang Y (2009) A fast algorithm for Edge-Preserving variational multichannel image restoration. SIAM. J Imaging Sci 2(2):569–592

    Article  MathSciNet  Google Scholar 

  47. Yang Y, Kong X, Feng C (2018) Double-compressed JPEG images steganalysis with transferring feature. Multimed Tools Appl 454:1–13

  48. Zhang Y, Luo X, Yang C, Liu F (2017) Joint JPEG compression and detection resistant performance enhancement for adaptive steganography using feature regions selection. Multimed Tools Appl 76(3):3649–3668

    Article  Google Scholar 

  49. Zhang Y, Qin C, Zhang W, Liu F, Luo X (2018) On the Fault-tolerant Performance for a Class of Robust Image Steganography. Signal Process 146:99–111

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China (Grant No. 61872368, No. 61802410, No. U1536121, No.11171346). The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Yang, L., Wen, J. et al. A subspace learning-based method for JPEG mismatched steganalysis. Multimed Tools Appl 78, 8151–8166 (2019). https://doi.org/10.1007/s11042-018-6719-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6719-5

Keywords

Navigation