Multimedia Tools and Applications

, Volume 78, Issue 10, pp 12987–13004 | Cite as

Glaucoma diagnosis in fundus eye images using diversity indexes

  • José Denes Lima AraújoEmail author
  • Johnatan Carvalho Souza
  • Otilio Paulo Silva Neto
  • Jefferson Alves de Sousa
  • João Dallyson Sousa de Almeida
  • Anselmo Cardoso de Paiva
  • Aristófanes Corrêa Silva
  • Geraldo Braz Junior
  • Marcelo Gattass


Glaucoma is the second major cause of vision loss worldwide. It is usually caused by the increase in the intraocular pressure, which damages the optic nerve resulting in gradual vision loss. Glaucoma is an asymptomatic disease in the initial stages. Early detection and treatment may prevent the vision loss. The head of the optic nerve (optic disc) is examined by using fundus eye images. Computer systems have been used to provide support in glaucoma diagnosis. This work proposes a method for glaucoma diagnosis using fundus eye images. Diversity indexes, which are typically used in ecological studies, are used in this work as texture descriptors in the optic disc region. Then, a feature selection procedure is performed using genetic algorithm and support vector machines (SVM) are used to classify fundus eye images in glaucomatous or normal. The proposed method obtained promising results for glaucoma diagnosis, reaching an accuracy of 93.41%, sensitivity of 92.83% and specificity of 93.69%.


Glaucoma Fundus eye image Computer aided diagnosis Diversity indexes 



The authors acknowledge the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Council for Scientific and Technological Development (CNPq), the Foundation for the Protection of Research and Scientific, the Technological Development of the State of Maranhão (FAPEMA) for financial support.


  1. 1.
    Abramoff MD, Garvin MK, Sonka M (2010) Retinal imaging and image analysis. IEEE Rev Biomed Eng 3:169–208. CrossRefGoogle Scholar
  2. 2.
    Acharya UR, Ng EYK, Eugene LWJ, Noronha KP, Min LC, Nayak KP, Bhandary SV (2014) Decision support system for the glaucoma using Gabor transformation. Biomed Signal Process Control 15:18–26. CrossRefGoogle Scholar
  3. 3.
    Al-Bander B, Al-Nuaimy W, Al-Taee MA, Zheng Y (2017) Automated glaucoma diagnosis using deep learning approach. In: 2017 14th international multi-conference on systems, signals devices (SSD), pp 207–210.
  4. 4.
    Almazroa A, Burman R, Raahemifar K, Lakshminarayanan V (2015) Optic disc and optic cup segmentation methodologies for glaucoma image detection: a survey. J Ophthalmol 2015Google Scholar
  5. 5.
    Banić N, LonCcarić S (2013) Light random sprays retinex: exploiting the noisy illumination estimation. IEEE Signal Process Lett 20 (12):1240–1243. CrossRefGoogle Scholar
  6. 6.
    Bland M (2015) An introduction to medical statistics. Oxford University Press, LondonzbMATHGoogle Scholar
  7. 7.
    Bock R, Meier J, Nyúl LG, Hornegger J, Michelson G (2010) Glaucoma risk index:automated glaucoma detection from color fundus images. Med Image Anal 14(3):471–481. CrossRefGoogle Scholar
  8. 8.
    Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27:1–27:27. CrossRefGoogle Scholar
  9. 9.
    de Sousa JA, de Paiva AC, Sousa de Almeida JD, Silva AC, Junior GB, Gattass M (2017) Texture based on geostatistic for glaucoma diagnosis from fundus eye image. Multimedia Tools and Applications 76(18):19,173–19,190. CrossRefGoogle Scholar
  10. 10.
    Duda H (1973) Pattern classification and scene analysis. Wiley, New YorkzbMATHGoogle Scholar
  11. 11.
    Faust O, Acharya R, Ng EYK, Ng KH, Suri JS (2012) Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review. J Med Syst 36(1):145–157CrossRefGoogle Scholar
  12. 12.
    Gajbhiye GO, Kamthane AN (2015) Automatic classification of glaucomatous images using wavelet and moment feature. In: 2015 annual IEEE India conference (INDICON), pp 1–5.
  13. 13.
    Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning, 1989. Addison-Wesley, ReadingzbMATHGoogle Scholar
  14. 14.
    Gonzalez RC, Woods R (2010) Processamento digital de imagens. Tradução de Cristina Yamagami e Leonardo PiamonteGoogle Scholar
  15. 15.
    Haleem MS, Han L, van Hemert J, Li B (2013) Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review. Comput Med Imaging Graph 37(7–8):581 – 596. CrossRefGoogle Scholar
  16. 16.
    Hani AFM, Soomro TA, Faye I, Kamel N, Yahya N (2014) Denoising methods for retinal fundus images. In: 2014 5th international conference on intelligent and advanced systems (ICIAS), pp 1–6.
  17. 17.
    Kanan C, Cottrell GW (2012) Color-to-grayscale: does the method matter in image recognition? PLOS ONE 7(1):1–7. CrossRefGoogle Scholar
  18. 18.
    Koh JE, Mookiah MRK, Kadri NA (2013) Application of multiresolution analysis for the detection of glaucoma. J Med Imaging Health Inf 3(3):401–408CrossRefGoogle Scholar
  19. 19.
    Kumar HV, Jayaram A, Karegowda A, Bharathi P (2016) A comparative study on filters with specila reference to retinal images. Proc Int J Comput Appl 138 (5):81–6Google Scholar
  20. 20.
    Land EH, McCann JJ (1971) Lightness and retinex theory. J Opt Soc Am 61(1):1–11. CrossRefGoogle Scholar
  21. 21.
    Lin SC, Singh K, Jampel HD, Hodapp EA, Smith SD, Francis BA, Dueker DK, Fechtner RD, Samples JS, Schuman JS et al (2007) Optic nerve head and retinal nerve fiber layer analysis: a report by the american academy of ophthalmology. Ophthalmology 114(10):1937–1949CrossRefGoogle Scholar
  22. 22.
    Maheshwari S, Pachori RB, Acharya UR (2017) Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images. IEEE Journal of Biomedical and Health Informatics 21(3):803–813. CrossRefGoogle Scholar
  23. 23.
    Maheshwari S, Pachori RB, Kanhangad V, Bhandary SV, Acharya UR (2017) Iterative variational mode decomposition based automated detection of glaucoma using fundus images. Comput Biol Chem 88:142–149. Google Scholar
  24. 24.
    Marrugan A (2004) Measuring biological diversity. Blackwell Scienc Ltd a Blackwell Publishing Company, CarltonGoogle Scholar
  25. 25.
    Mary MCVS, Rajsingh EB, Naik GR (2016) Retinal fundus image analysis for diagnosis of glaucoma: A comprehensive survey. IEEE Access 4:4327–4354. CrossRefGoogle Scholar
  26. 26.
    McIntosh RP (1967) An index of diversity and the relation of certain concepts to diversity. Ecology 48(3):392–404. CrossRefGoogle Scholar
  27. 27.
    Mookiah MRK, Acharya UR, Lim CM, Petznick A, Suri JS (2012) Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowl-Based Syst 33:73–82. CrossRefGoogle Scholar
  28. 28.
    Noronha KP, Acharya UR, Nayak KP, Martis RJ, Bhandary SV (2014) Automated classification of glaucoma stages using higher order cumulant features. Biomedical Signal Processing and Control 10:174–183. CrossRefGoogle Scholar
  29. 29.
    Oh JE, Yang HK, Kim KG, Hwang JM (2015) Automatic computer-aided diagnosis of retinal nerve fiber layer defects using fundus photographs in optic neuropathy. Investig Ophthalmol Vis Sci 56(5):2872. CrossRefGoogle Scholar
  30. 30.
    Raja C, Gangatharan N (2015) A hybrid swarm algorithm for optimizing glaucoma diagnosis. Comput Biol Med 63:196–207. CrossRefGoogle Scholar
  31. 31.
    Ramasubramanian B, Selvaperumal S (2016) A comprehensive review on various preprocessing methods in detecting diabetic retinopathy. In: 2016 international conference on communication and signal processing (ICCSP), pp 0642–0646.
  32. 32.
    Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana, p 29zbMATHGoogle Scholar
  33. 33.
    Siedlecki W, Sklansky J (1989) A note on genetic algorithms for large-scale feature selection. Pattern Recogn Lett 10(5):335–347. CrossRefzbMATHGoogle Scholar
  34. 34.
    Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 121(11):2081–2090. CrossRefGoogle Scholar
  35. 35.
    Trucco E, Ruggeri A, Karnowski T, Giancardo L, Chaum E, Hubschman JP, Al-Diri B, Cheung CY, Wong D, Abramoff M et al (2013) Validating retinal fundus image analysis algorithms: Issues and a proposalvalidating retinal fundus image analysis algorithms. Investig Ophthalmol Vis Sci 54(5):3546–3559CrossRefGoogle Scholar
  36. 36.
    Vapnik V (1998) Statistical learning theory. Wiley, New YorkzbMATHGoogle Scholar
  37. 37.
    WGA (2017) What is glaucoma? Accessed 17 Mar 2017
  38. 38.
    Zhang Z, Srivastava R, Liu H, Chen X, Duan L, Kee Wong DW, Kwoh CK, Wong TY, Liu J (2014) A survey on computer aided diagnosis for ocular diseases. BMC Medical Informatics and Decision Making 14(1):80. CrossRefGoogle Scholar
  39. 39.
    Zhuang L, Dai H (2006) Parameter optimization of kernel-based one-class classifier on imbalance learning. Journal of Computers 1(7):32–40CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • José Denes Lima Araújo
    • 1
    Email author
  • Johnatan Carvalho Souza
    • 1
  • Otilio Paulo Silva Neto
    • 1
  • Jefferson Alves de Sousa
    • 1
  • João Dallyson Sousa de Almeida
    • 1
  • Anselmo Cardoso de Paiva
    • 1
  • Aristófanes Corrêa Silva
    • 1
  • Geraldo Braz Junior
    • 1
  • Marcelo Gattass
    • 2
  1. 1.Federal University of MaranhãoSão LuísBrazil
  2. 2.Pontifical Catholic University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations