Skip to main content
Log in

Segmentation of ischemic stroke lesion from 3d mr images using random forest

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper focuses on segmentation of ischemic stroke lesion from the dataset contributed by Ischemic Stroke Lesion Segmentation (ISLES)-2015 Sub-acute Ischemic Stroke lesion Segmentation (SISS) challenge. The dataset comprises 28 stroke cases of magnetic resonance (MR) images. This study considers fluid attenuation inversion recovery (FLAIR) MR images for the segmentation of lesions. MR images are affected by various artifacts and noise. Hence, we applied wavelet based data denoising technique by optimal parameter selection for stroke lesion enhancement followed by random forest (RF). RF classifier was trained for different part of the brain for segmenting the stroke lesion. The obtained results show best overall segmentation accuracy when compared with the other methods. To measure the image similarity between the ground truth and the segmented image, we used the evaluation method provided by the ISLES-2015. The average symmetric surface distance (ASSD) of the segmentation was measured to be 4.57 mm, while Dice’s coefficient ((DC) lies between 0 and 1) was used to measure the volume overlap accuracy with an average of 0.67. The maximum of all surface distance was given by Hausdorff distance (HD) with an average of 28.09 mm. The average precision and average recall observed was 0.70 and 0.71 respectively. The ISLES image data and ground truth images kept on being openly accessible through an online virtual skeleton database which is an ongoing benchmarking resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alexander B, Murray AL, Loh WY, Matthews LG, Adamson C, Beare R, Chen J, Kelly CE, Rees S, Warfield SK, Anderson PJ (2017) A new neonatal cortical and subcortical brain atlas: the Melbourne Children’s Regional Infant Brain (m-CRIB) atlas. NeuroImage 147:841–851

    Article  Google Scholar 

  2. Anbeek P, Vincken K, van Osch M, Bisschops B, Viergever M, van der Grond J (2003) Automated white matter lesion segmentation by voxel probability estimation. In: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer Berlin Heidelberg, pp 610–617

    Google Scholar 

  3. Bernarding J, Braun J, Hohmann J, Mansmann U, Hoehn-Berlage M, Stapf C, Wolf KJ, Tolxdorff T (2000) Histogram-based characterization of healthy and ischemic brain tissues using multiparametric MR imaging including apparent diffusion coefficient maps and relaxometry. Magn Reson Med 43(1):52–61

    Article  Google Scholar 

  4. Bisio I, Fedeli A, Lavagetto F, Pastorino M, Randazzo A, Sciarrone A, Tavanti E (2018) A numerical study concerning brain stroke detection by microwave imaging systems. Multimed Tools Appl 77(88):9341–9363

    Article  Google Scholar 

  5. Bonita R, Mendis S, Truelsen T, Bogousslavsky J, Toole J, Yatsu F (2004) The global stroke initiative. Lancet Neurol 3(7):391–393

    Article  Google Scholar 

  6. Braun J, Bernarding J, Koennecke HC, Wolf KJ, Tolxdorff T (2002) Feature-based, automated segmentation of cerebral infarct patterns using T2- and Diffusion-weighted imaging. Comput Methods Biomech Biomed Engin 5(6):411–420

    Article  Google Scholar 

  7. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  8. Burt P, Adelson E (1983) The Laplacian pyramid as a compact image code. IEEE Trans Commun 31(4):532–540

    Article  Google Scholar 

  9. Carano RA, Li F, Irie K, Helmer KG, Silva MD, Fisher M, Sotak CH (2000) Multispectral analysis of the temporal evolution of cerebral ischemia in the rat brain. J Magn Reson Imaging 12(6):842–858

    Article  Google Scholar 

  10. Caselles V, Catté F, Coll T, Dibos F (1993) A geometric model for active contours in image processing. Numer Math 66(1):1–31

    Article  MathSciNet  MATH  Google Scholar 

  11. Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79

    Article  MATH  Google Scholar 

  12. Castillo J, Leira R, García MM, Serena J, Blanco M, Dávalos A (2004) Blood pressure decrease during the acute phase of ischemic stroke is associated with brain injury and poor stroke outcome. Stroke 35(2):520–526

    Article  Google Scholar 

  13. Chawla M, Sharma S, Sivaswamy J, Kishore LT (2009) A method for automatic detection and classification of stroke from brain CT images. In: Proc of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), pp 3581–3584

  14. Chen L, Bentley P, Rueckert D (2015) A novel framework for sub-acute stroke lesion segmentation based on random forest. In: Proc of International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2015, Ischemic Stroke Lesion Segmentation, pp 9–12

  15. Chyzhyk D, Dacosta-Aguayo R, Mataró M, Graña M (2015) An active learning approach for stroke lesion segmentation on multimodal MRI data. Neurocomputing 150:26–36

    Article  Google Scholar 

  16. Crinion J, Holland AL, Copland DA, Thompson CK, Hillis AE (2013) Neuroimaging in aphasia treatment research: quantifying brain lesions after stroke. Neuroimage 73:208–214

    Article  Google Scholar 

  17. Crowley JL (1981) A representation for visual information. PhD thesis, Carnegie Mellon University

  18. Cui J, Liu Y, Xu Y, Zhao H, Zha H (2013) Tracking generic human motion via fusion of low-and high-dimensional approaches. IEEE Trans Syst Man Cybern Syst 43(4):996–1002

    Article  Google Scholar 

  19. Donoho DL (1995) De-noising by soft-thresholding. IEEE Trans Inf Theory 41 (3):613–627

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao S, Yang J, Yan Y (2014) A novel multiphase active contour model for inhomogeneous image segmentation. Multimed Tools Appl 72(3):2321–37

    Article  Google Scholar 

  21. Grossmann A, Morlet J (1984) Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 15(4):723–736

    Article  MathSciNet  MATH  Google Scholar 

  22. Grzesik A, Bernarding J, Braun J, Koennecke HC, Wolf KJ, Tolxdorff T (2000) Characterization of storke lesions using a histrogram-based data analysis including diffusion-and perfusion-weighted imaging. Bildverarbeitung für die Medizin, Springer

    Book  Google Scholar 

  23. Guerrero R, Qin C, Oktay O, Bowles C, Chen L, Joules R, Wolz R, Valdés-Hernández MC, Dickie DA, Wardlaw J, Rueckert D (2018) White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. Neuroimage Clin 17:918–934

    Article  Google Scholar 

  24. Güler İ, Demirhan A, Karakış R (2009) Interpretation of MR images using self-organizing maps and knowledge-based expert systems. Digit Signal Process 19(4):668–677

    Article  Google Scholar 

  25. Haeck T, Maes F, Suetens P (2015) ISLES Challenge 2015: Automated model-based segmentation of ischemic stroke in MR images. In: Proc of International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2015, Ischemic Stroke Lesion Segmentation, pp 47–50

  26. Heart Disease and Stroke Statistics 2017 At-a-Glance. https://www.heart.org/idc/groups/ahamah-public/@wcm/@sop/@smd/documents/downloadable/ucm_491265.eps. Accessed 27 January 2017

  27. Hillman GR, Chang CW, Ying H, Kent TA, Yen J (1995) Automatic system for brain MRI analysis using a novel combination of fuzzy rule-based and automatic clustering techniques. In: Proceedings of medical imaging 1995: Image processing, SPIE, vol 2434, pp 16–26

  28. Hong YC, Lee JT, Kim H, Kwon HJ (2002) Air pollution. Stroke 33 (9):2165–2169

    Article  Google Scholar 

  29. Hutter A, Schwetye KE, Bierhals AJ, McKinstry RC (2003) Brain neoplasms: epidemiology, diagnosis, and prospects for cost-effective imaging. Neuroimaging Clin N Am 13(2):237–250

    Article  Google Scholar 

  30. Jacobs MA, Mitsias P, Soltanian-Zadeh H, Santhakumar S, Ghanei A, Hammond R, Peck DJ, Chopp M, Patel S (2001) Multiparametric MRI tissue characterization in clinical stroke with correlation to clinical outcome. Stroke 32 (4):950–957

    Article  Google Scholar 

  31. Jenkinson M, Pechaud M, Smith S (2005) BET2: MR-Based estimation of brain, skull and scalp surfaces. In: Eleventh annual meeting of the organization for human brain mapping, vol 17, pp 167

  32. Kabir Y, Dojat M, Scherrer B, Forbes F, Garbay C (2007) Multimodal MRI segmentation of ischemic stroke lesions. In: Proc of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), pp 1595–1598

  33. Kamnitsas K, Chen L, Ledig C, Rueckert D, Glocker B (2015) Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI. In: Proc of International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2015, Ischemic Stroke Lesion Segmentation, pp 13–16

  34. Kohler R (1981) A segmentation system based on thresholding. Comput Graph Image Process 15(4):319–338

    Article  Google Scholar 

  35. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2activity: Recognizing Complex Activities from Sensor Data. In: IJCAI, vol 2015, pp 1617–1623

  36. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–15

    Article  Google Scholar 

  37. Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) Fortune teller: Predicting your career path. In: AAAI 2016, vol 2016, pp 201–207

  38. Liu Y, Zheng Y, Liang Y, Liu S, Rosenblum DS (2016) Urban water quality prediction based on multi-task multi-view learning

  39. Mackay J, Mensah GA, Mendis S, Greenlund K (2004) The atlas of heart disease and stroke. World Health Organization, Geneva

    Google Scholar 

  40. Mahmood Q, Basit A (2015) Automatic ischemic stroke lesion segmentation in multi-spectral MRI images using random forests classifier. In: Proc of International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2015, Ischemic Stroke Lesion Segmentation, pp 43–46

  41. Maier O, Wilms M, Handels H (2015) Random forests with selected features for stroke lesion segmentation. In: Proc of International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2015, Ischemic Stroke Lesion Segmentation, pp 17–21

  42. Maier O, Menze BH, von der Gablentz J, Häni L, Heinrich MP, Liebrand M, Winzeck S, Basit A, Bentley P, Chen L, Christiaens D (2017) ISLES 2015-A Public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med Image Anal 35:250–269

    Article  Google Scholar 

  43. Mitra J, Bourgeat P, Fripp J, Ghose S, Rose S, Salvado O, Connelly A, Campbell B, Palmer S, Sharma G, Christensen S (2014) Lesion segmentation from multimodal MRI using random forest following ischemic stroke. NeuroImage 98:324–335

    Article  Google Scholar 

  44. Neumann-Haefelin T, Wittsack HJ, Wenserski F, Siebler M, Seitz RJ, Mödder U, Freund HJ (1999) Diffusion-and perfusion-weighted MRI. Stroke 30(8):1591–1597

    Article  Google Scholar 

  45. Parsons MW, Pepper EM, Bateman GA, Wang Y, Levi CR (2007) Identification of the penumbra and infarct core on hyperacute noncontrast and perfusion CT. Neurology 68(10):730–736

    Article  Google Scholar 

  46. Plunkett JW (2008) Plunkett’s health care industry almanac. Plunkett Research, Ltd, Houston

    Google Scholar 

  47. Rajini NH, Bhavani R (2013) Computer aided detection of ischemic stroke using segmentation and texture features. Measurement 46(6):1865–1874

    Article  Google Scholar 

  48. Rekik I, Allassonnière S, Carpenter TK, Wardlaw JM (2012) Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal. Neuroimage Clin 1(1):164–178

    Article  Google Scholar 

  49. Reza SM, Pei L, Iftekharuddin KM (2015) Ischemic stroke lesion segmentation using local gradient and texture features. In: Proc of International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2015, Ischemic Stroke Lesion Segmentation, pp 23–26

  50. Robben D, Christiaens D, Rangarajan JR, Gelderblom J, Joris P, Maes F, Suetens P (2015) ISLES Challenge 2015: A voxel-wise, cascaded classification approach to stroke lesion segmentation. In: Proc of International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2015, Ischemic Stroke Lesion Segmentation, pp 27–30

  51. Roy S, Chatterjee K, Bandyopadhyay SK (2014) Segmentation of acute brain stroke from MRI of brain image using power law transformation with accuracy estimation. In: Advanced computing, networking and informatics, springer international publishing, vol 1, pp 453–461

    Google Scholar 

  52. Schaefer PW, Ozsunar Y, He J, Hamberg LM, Hunter GJ, Sorensen AG, Koroshetz WJ, Gonzalez RG (2003) Assessing tissue viability with MR diffusion and perfusion imaging. AJNR Am J Neuroradiol 24(3):436–443

    Google Scholar 

  53. Schlaug G, Siewert B, Benfield A, Edelman RR, Warach S (1997) Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology 49(1):113–119

    Article  Google Scholar 

  54. Seghier ML, Ramlackhansingh A, Crinion J, Leff AP, Price CJ (2008) Lesion identification using unified segmentation-normalisation models and fuzzy clustering. Neuroimage 41(4):1253–1266

    Article  Google Scholar 

  55. Selesnick IW, Baraniuk RG, Kingsbury NC (2005) The dual-tree complex wavelet transform. IEEE Signal Process Mag 22(6):123–151

    Article  Google Scholar 

  56. Shih LC, Saver JL, Alger JR, Starkman S, Leary MC, Vinuela F, Duckwiler G, Gobin YP, Jahan R, Villablanca JP, Vespa PM (2003) Perfusion-weighted magnetic resonance imaging thresholds identifying core, irreversibly infarcted tissue. Stroke 34(6):1425–1430

    Article  Google Scholar 

  57. Stroke Statistics | Internet Stroke Center. http://www.strokecenter.org/patients/about-stroke/stroke-statistics/. Accessed 30 January 2017

  58. Yang X, Gao X, Tao D, Li X, Li J (2015) An efficient MRF embedded level set method for image segmentation. IEEE Trans Image Process 24(1):9–21

    Article  MathSciNet  MATH  Google Scholar 

  59. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128

    Article  Google Scholar 

  60. Zhang X, Sun Y, Wang G, Guo Q, Zhang C, Chen B (2017) Improved fuzzy clustering algorithm with non-local information for image segmentation. Multimed Tools Appl 76(6):7869–7895

    Article  Google Scholar 

  61. Zhang R, Zhao L, Lou W, Abrigo JM, Mok VC, Chu WC, Wang D, Shi L (2018) Automatic Segmentation of Acute Ischemic Stroke from DWI using 3D Fully Convolutional DenseNets. IEEE Trans Med Imaging

  62. Zhu SC, Yuille A (1996) Region competition: Unifying snakes, region growing, and bayes/MDL for multiband image segmentation. IEEE Trans Pattern Anal Mach Intell 18(9):884–900

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Indian Institute of Technology Roorkee, Roorkee, India for their support.

Funding

This study was funded by the Ministry of Human Resource Development, Government of India, India (grant number MHC-02-23-200-428).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjali Gautam.

Ethics declarations

Conflict of interests

All authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, A., Raman, B. Segmentation of ischemic stroke lesion from 3d mr images using random forest. Multimed Tools Appl 78, 6559–6579 (2019). https://doi.org/10.1007/s11042-018-6418-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6418-2

Keywords

Navigation