Multimedia Tools and Applications

, Volume 78, Issue 10, pp 12961–12986 | Cite as

Diagnosis of breast tissue in mammography images based local feature descriptors

  • Caio Eduardo Falcão MatosEmail author
  • Johnatan Carvalho Souza
  • João Otávio Bandeira Diniz
  • Geraldo Braz Junior
  • Anselmo Cardoso de Paiva
  • João Dallyson Sousa de Almeida
  • Simara Vieira da Rocha
  • Aristófanes Correa Silva


Breast cancer is one of the leading causes of death by cancer among women. The high mortality rates and the occurrence of this cancer worldwide show the importance of the investigation and development of means for the detection and early diagnosis of this disease. Computer-Aided Detection and Diagnosis systems have been developed to improve diagnostic accuracy by radiologists. This work proposes a method for discriminating patterns of malignancy and benignity of masses in digitized mammography images through the analysis of local features. The method comparatively applies the Scale-Invariant Feature Transform (SIFT), Speed Up Robust Feature (SURF), Oriented Fast and Rotated BRIEF (ORB) and Local Binary Pattern (LBP) descriptors for local feature extraction. These features are represented by a Bag of Features (BoF) model, applied to provide new representations of the data and to reduce its dimensionality. Finally, the features are used as input for the Support Vector Machine (SVM), Adaptive Boosting (Adaboost) and Random Forests (RF) classifiers to differentiate malignant and benign masses. The method obtained significant results, reaching 100% sensitivity, 99.65% accuracy and 99.24% specificity for benign and malignant mass classification.


Breast cancer Mammography Pattern recognition Local features Feature representation 



The authors thanks CNPq and FAPEMA for the financial support.


  1. 1.
    Abbas Q (2016) Deepcad: A computer-aided diagnosis system for mammographic masses using deep invariant features. Computers 5(4):28. Google Scholar
  2. 2.
    Abdel-Zaher AM, Eldeib AM (2016) Breast cancer classification using deep belief networks. Expert Syst Appl 46:139–144. Google Scholar
  3. 3.
    Alahi A, Ortiz R, Vandergheynst P (2012) Freak: fast retina keypoint. In: Conference on IEEE computer vision and pattern recognition (CVPR) 2012. IEEE, pp 510–517Google Scholar
  4. 4.
    Antani S, Kasturi R, Jain R (2002) A survey on the use of pattern recognition methods for abstraction, indexing and retrieval of images and video. Pattern Recogn 35(4):945–965zbMATHGoogle Scholar
  5. 5.
    Arevalo J, Gonzalez FA, Ramos-Pollan R, Oliveira JL, Lopez MAG (2015) Convolutional neural networks for mammography mass lesion classification.. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS, pp 797–800.
  6. 6.
    Avila S (2013) Extended bag-of-words formalism for image classification. PhD thesis, Université, Pierre et Marie Curie-Paris VIGoogle Scholar
  7. 7.
    Ayed NGB, Masmoudi AD, Masmoudi DS (2014) A new automated CAD system for classification of malignant and benign lesions. Asian J Inf Technol 13(9):477–484Google Scholar
  8. 8.
    Azar AT, Elshazly HI, Hassanien AE, Elkorany AM (2014) A random forest classifier for lymph diseases. Comput Methods Prog Biomed 113(2):465–473Google Scholar
  9. 9.
    Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (surf). Comput Vis Image Underst 110(3):346–359Google Scholar
  10. 10.
    Beura S, Majhi B, Dash R (2015) Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer. Neurocomputing 154:1–14Google Scholar
  11. 11.
    Braz JG, Cardoso dPA, Corrêa SA, Cesar MdOA (2009) Classification of breast tissues using Moran’s index and Geary’s coefficient as texture signatures and SVM. Comput Biol Med 39(12):1063–1072Google Scholar
  12. 12.
    Breiman L (2001) Random forests. Mach Learn 45(1):5–32zbMATHGoogle Scholar
  13. 13.
    Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC Press, FlóridazbMATHGoogle Scholar
  14. 14.
    Brown M, Lowe DG (2002) Invariant features from interest point groups. In: BMVCGoogle Scholar
  15. 15.
    Calonder M, Lepetit V, Strecha C, Fua P (2010) Brief: binary robust independent elementary features. Computer Vision–ECCV 2010, vol 6314, pp 778–792Google Scholar
  16. 16.
    Campos L, Silva A, Barros A (2005) Diagnosis of breast cancer in digital mammograms using independent component analysis and neural networks. Progress in Pattern Recognition, Image Analysis and Applications, vol 3773, pp 460–469Google Scholar
  17. 17.
    Chatfield K, Lempitsky V, Vedaldi A, Zisserman A (2011) The devil is in the details: an evaluation of recent feature encoding methods. In: British machine vision conferenceGoogle Scholar
  18. 18.
    da Rocha SV, Junior GB, Silva AC, de Paiva AC, Gattass M (2016) Texture analysis of masses malignant in mammograms images using a combined approach of diversity index and local binary patterns distribution. Expert Syst Appl 66:7–19Google Scholar
  19. 19.
    Dhahbi S, Barhoumi W, Zagrouba E (2015) Breast cancer diagnosis in digitized mammograms using curvelet moments. Comput Biol Med 64:79–90. Google Scholar
  20. 20.
    Don S, Chung D, Revathy K, Choi E, Min D (2012) A new approach for mammogram image classification using fractal properties. Cybern Inf Technol 12 (2):69–83MathSciNetGoogle Scholar
  21. 21.
    Everitt B (1998) The Cambridge dictionary of statistics. Cambridge University Press, CambridgezbMATHGoogle Scholar
  22. 22.
    Fawcett T (2006) An introduction to roc analysis. Pattern Recogn Lett 27 (8):861–874MathSciNetGoogle Scholar
  23. 23.
    Freund Y, Schapire RE (1995) A desicion-theoretic generalization of on-line learning and an application to boosting. In: European conference on computational learning theory, Springer, pp 23–37Google Scholar
  24. 24.
    Freund Y, Schapire RE, et al. (1996) Experiments with a new boosting algorithm. In: Icml, vol 96, pp 148–156Google Scholar
  25. 25.
    Giger ML (2000) Computer-aided diagnosis of breast lesions in medical images. Comput Sci Eng 2(5):39–45Google Scholar
  26. 26.
    Görgel P, Sertbas A, Ucan ON (2013) Mammographical mass detection and classification using Local Seed Region Growing-Spherical Wavelet Transform (LSRG-SWT) hybrid scheme. Comput Biol Med 43(6):765–774. Google Scholar
  27. 27.
    Haralick RM, Shanmugam K, et al. (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC 3(6):610–621Google Scholar
  28. 28.
    Harris C, Stephens M (1988) A combined corner and edge detector. In: Alvey vision conference, Citeseer, vol 15, p 50Google Scholar
  29. 29.
    Harris ZS (1954) Distributional structure. Word 10(2-3):146–162Google Scholar
  30. 30.
    Hartigan JA, Wong MA (1979) Algorithm as 136: a k-means clustering algorithm. Appl Stat pp 100–108Google Scholar
  31. 31.
    Haykin S (1994) Neural networks: a comprehensive foundation. Prentice Hall PTRGoogle Scholar
  32. 32.
    Heath M, Bowyer K, Kopans D, Kegelmeyer P Jr, Moore R, Chang K, Munishkumaran S (1998) Current status of the digital database for screening mammography. In: Digital mammography. Springer, pp 457–460Google Scholar
  33. 33.
    Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844Google Scholar
  34. 34.
    Hussain M, Khan S, Muhammad G, Ahmad I, Bebis G (2014) Effective extraction of gabor features for false positive reduction and mass classification in mammography. Appl Math Inf Sci 8(1 L):397–412Google Scholar
  35. 35.
    Kaur P (2016) Mammogram image nucleus segmentation and classification using convolution neural network classifier. Int J Adv Res Ideas Innov Technol 2(5):1–12Google Scholar
  36. 36.
    Klein G, Murray D (2007) Parallel tracking and mapping for small ar workspaces. In: 6th IEEE and ACM international symposium on mixed and augmented reality, 2007. ISMAR 2007. IEEE, pp 225–234Google Scholar
  37. 37.
    Lindeberg T (1998) Feature detection with automatic scale selection. Int J Comput Vis 30(2):79–116Google Scholar
  38. 38.
    Liu X, Tang J (2014) Mass classification in mammograms using selected geometry and texture features, and a new SVM-based feature selection method. IEEE Systems Journal.
  39. 39.
    Lowe DG (1999) Object recognition from local scale-invariant features. In: The proceedings of the 7th IEEE international conference on computer vision, 1999, vol 2. IEEE, pp 1150–1157Google Scholar
  40. 40.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110Google Scholar
  41. 41.
    Lu F, Huang J, Zhan K (2015) Boosting classifiers for scene category recognition. J Inf Hiding Multimedia Signal Process 6(4):708–717Google Scholar
  42. 42.
    Martins LdO, Santos AMd, Silva AC, Paiva AC (2006) Classification of normal, benign and malignant tissues using co-occurrence matrix and bayesian neural network in mammographic images. In: 9th Brazilian symposium on neural networks, 2006. SBRN’06. IEEE, pp 24–29Google Scholar
  43. 43.
    Massich J, Meriaudeau F, Sentís M, Ganau S, Pérez E, Puig D, Martí R, Oliver A, Martí J (2014) Sift texture description for understanding breast ultrasound images. In: Breast imaging. Springer, pp 681–688Google Scholar
  44. 44.
    Mikolajczyk K, Schmid C (2001) Indexing based on scale invariant interest points. In: Proceedings of the 8th IEEE international conference on computer vision, 2001. ICCV 2001, vol 1. IEEE, Florida, pp 525–531Google Scholar
  45. 45.
    Moayedi F, Azimifar Z, Boostani R, Katebi S (2010) Contourlet-based mammography mass classification using the SVM family. Comput Biol Med.
  46. 46.
    Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29(1):51–59Google Scholar
  47. 47.
    Peng X, Wang L, Wang X, Qiao y (2016) Bag of visual words and fusion methods for action recognition: comprehensive study and good practice. Comput Vis Image UnderstGoogle Scholar
  48. 48.
    Rijsbergen CJV (1979) Information retrieval, 2nd edn. Butterworth-Heinemann, NewtonzbMATHGoogle Scholar
  49. 49.
    Rocha SVd, Braz Junior G, Corrêa A, Cardoso A, Paiva D, Gattass M (2016) Texture analysis of masses malignant in mammograms images using a combined approach of diversity index and local binary patterns distribution. Expert Syst Appl 66:7–19Google Scholar
  50. 50.
    Rosin PL (1999) Measuring corner properties. Comput Vis Image Underst 73 (2):291–307Google Scholar
  51. 51.
    Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. In: Computer vision–ECCV 2006. Springer, pp 430–443Google Scholar
  52. 52.
    Rothacker L, Rusinol M, Fink GA (2013) Bag-of-features hmms for segmentation-free word spotting in handwritten documents. In: 12th international conference on document analysis and recognition (ICDAR), 2013. IEEE, pp 1305–1309Google Scholar
  53. 53.
    Rouhi R, Jafari M, Kasaei S, Keshavarzian P (2015) Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Syst Appl 42(3):990–1002. Google Scholar
  54. 54.
    Rublee E, Rabaud V, Konolige K, Bradski G (2011) Orb: an efficient alternative to sift or surf. In: International conference on computer vision (ICCV), 2011. IEEE, pp 2564–2571Google Scholar
  55. 55.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA: a cancer journal for clinicians 66(1):7–30Google Scholar
  56. 56.
    Sun H, Sun X, Wang H, Li Y, Li X (2012) Automatic target detection in high-resolution remote sensing images using spatial sparse coding bag-of-words model. IEEE Geosci Remote Sens Lett 9(1):109–113Google Scholar
  57. 57.
    Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2013) Auto-weka: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 847–855Google Scholar
  58. 58.
    Vapnik VN, Vapnik V (1998) Statistical learning theory, vol 1. Wiley, New YorkzbMATHGoogle Scholar
  59. 59.
    Wajid SK, Hussain A (2015) Local energy-based shape histogram feature extraction technique for breast cancer diagnosis. Expert Syst Appl 42(20):6990–6999. Google Scholar
  60. 60.
    Wan J, Ruan Q, Li W, Deng S (2013) One-shot learning gesture recognition from rgb-d data using bag of features. J Mach Learn Res 14(1):2549–2582Google Scholar
  61. 61.
    Wang J, Li Y, Zhang Y, Xie H, Wang C (2011) Bag-of-features based classification of breast parenchymal tissue in the mammogram via jointly selecting and weighting visual words. In: 6th international conference on image and graphics (ICIG), 2011. IEEE, pp 622–627Google Scholar
  62. 62.
    WHO (2014) Who position paper on mammography screeningGoogle Scholar
  63. 63.
    Witkin AP (1987) Scale-space filtering. US Patent 4,658,372Google Scholar
  64. 64.
    Xie X, Li B, Chai X (2015) Kernel-based nonparametric fisher classifier for hyperspectral remote sensing imagery. Algorithms 19(20):21Google Scholar
  65. 65.
    Xu S, Fang T, Li D, Wang S (2010) Object classification of aerial images with bag-of-visual words. IEEE Geosci Remote Sens Lett 7(2):366–370Google Scholar
  66. 66.
    Yang J, Jiang YG, Hauptmann AG, Ngo CW (2007) Evaluating bag-of-visual-words representations in scene classification. In: Proceedings of the international workshop on workshop on multimedia information retrieval. ACM, pp 197–206Google Scholar
  67. 67.
    Yang Y, Newsam S (2010) Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems. ACM, San Jose, pp 270–279Google Scholar
  68. 68.
    Zhou L, Zhou Z, Hu D (2013) Scene classification using a multi-resolution bag-of-features model. Pattern Recogn 46(1):424–433Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Caio Eduardo Falcão Matos
    • 1
    Email author
  • Johnatan Carvalho Souza
    • 1
  • João Otávio Bandeira Diniz
    • 1
  • Geraldo Braz Junior
    • 1
  • Anselmo Cardoso de Paiva
    • 1
  • João Dallyson Sousa de Almeida
    • 1
  • Simara Vieira da Rocha
    • 1
  • Aristófanes Correa Silva
    • 1
  1. 1.Computer Applied GroupFederal University of MaranhãoSão LuísBrazil

Personalised recommendations