Multimedia Tools and Applications

, Volume 77, Issue 24, pp 31953–31967 | Cite as

An effective temporal error concealment in H.264 video sequences based on scene change detection-PCA model

  • Gwangmin ChoeEmail author
  • Cholman Nam
  • Changgon Chu


This paper proposes a new temporal error concealment algorithm in H.264 video sequences based on scene change detection and PCA model. In order to detect scene change, dynamic threshold and image similarity metric are presented using coding prediction mode and DCT AC energy in H.264 baseline. UPCA (Updated PCA) model is presented by combining the scene change feature with Index transformation-Buffer updating approach. The lost images are concealed by Projection onto Convex Sets algorithm with UPCA model. Experimental results show that the proposed algorithm can achieve better error concealment performance for the higher motion and the frequent scene change, compared with the related method.


Error concealment Scene change H.264/AVC PCA Face recognition Video sequence 


  1. 1.
    Ameigeiras P, Navarro-Ortiz J, Andres-Maldonado P et al (2016) 3GPP QoS-based scheduling framework for LTE. EURASIP J Wirel Commun Netw 78:78CrossRefGoogle Scholar
  2. 2.
    Behar R, Samet Y, Nossenson R (2015) Session management of variable video rate streaming session over multi-channel networks. In: 7th international conference on evolving internet, pp 26–33Google Scholar
  3. 3.
    Bo Y, Ng KW (2004) A novel motion vector recovery algorithm for error concealment in video transmission. Consumer Commun Netw Conference:621–623Google Scholar
  4. 4.
    Brandt J, Trotzky J, Wolf L (2008) Fast frame-based scene change detection in the compressed domain for MPEG-4 video. In: Second international conference on next generation M o b i l e applications, services, and technologies NGMAST’09[c], pp 514–520Google Scholar
  5. 5.
    Chen T, Zhang X, Shi Y-Q (2003) Error concealment using refined boundary matching algorithm, information technology. Res Education:55–59Google Scholar
  6. 6.
    Chen TP-C, Chen T (2002) Second-generation error concealment for video transport over error-prone channels. Wiley Wireless Commun M o b i l e Comput 6(2):607–624CrossRefGoogle Scholar
  7. 7.
    De Bruyne S, De Neve W, De Wolf K, De Schrijver D, Van de Verhoeve P (2007) Temporal video segmentation on H.264 compressed bit streams. Advances in Multimedia Modeling. MMM2007. Springer, Singapore, pp 1–12Google Scholar
  8. 8.
    Dehghani M, Arshad K, MacKenzie R (2015) LTE-advanced radio access enhancements, a survey. Wireless Pers Commun 80:891–921CrossRefGoogle Scholar
  9. 9.
    H.264 Software Coordination JM Software, ver. 15.0, 2009,1:
  10. 10.
    Lam WM, Reibman AR, Liu B (1993) Recovery of lost or erroneously received motion vectors. ICASSP-93 4:417–420CrossRefGoogle Scholar
  11. 11.
    Li H, Liu G, Zhang Z, Li Y (2004) Adaptive scene detection algorithm for VBR video stream. IEEE Trans Multimed 6(4):624–633CrossRefGoogle Scholar
  12. 12.
    Li X, Orchard MT (2002) Novel sequential error-concealment techniques using orientation adaptive interpolation. IEEE Trans Circuit Syst Video Technol 10 (12):854–864Google Scholar
  13. 13.
    Nemethova O (2007) Error resilient transmission of video streaming over wireless mobile networks. Technische Universit at Wien Osterreich 3:77–88Google Scholar
  14. 14.
    Xie X, Zaitsev Y (2014) Scalable, MEMS-enabled, vibrational tactile actuators for high resolution tactile displays. JMM 24(12):11Google Scholar
  15. 15.
    Xie X, Zaitsev Y et al (2014) Compact, scalable, high-resolution, MEMS-enabled tactile displays. In: Proceedings of solid-state sensors, actuators, and microsystems workshop, June 8-12, pp 127–130Google Scholar
  16. 16.
    Yu G, Li Z, Wang S-Y, Shen L-S (2010) A GOP level video scene change detection algorithm in H.264 compression domain. Chinese J Electron 38(2):382–386Google Scholar
  17. 17.
    Zeng W, Gao W (2005) Shot change detection on H.264 compressed video. In: IEEE international symposium oil circuits and systems, Kobe, Japan. IEEE, pp 3459–3462Google Scholar
  18. 18.
    Zhou L (2015) Mobile device-to-device video distribution: theory and application. Journal ACM Transactions on Multi-media Computing, Communications and Applications (ToMM) 12(3):1253– 1271Google Scholar
  19. 19.
    Zhou L, Wang XB, Wei T, Muntean G-M, Geller B (2010) Distributed scheduling scheme for video streaming over multi-channel multi-radio multi-hop wireless networks. IEEE J Selected Areas in Commun 28(3):409–419CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Visual Information Processing Laboratory, School of Computer Science and TechnologyKim Il Sung UniversityPyongyangDemocratic People’s Republic of Korea
  2. 2.Information and Communication Laboratory, School of Computer Science and TechnologyKim Il Sung UniversityPyongyangDemocratic People’s Republic of Korea

Personalised recommendations