Content-based image retrieval via a hierarchical-local-feature extraction scheme

Article
  • 35 Downloads

Abstract

Recently, with the development of various camera sensors and internet network, the volume of digital images is becoming big. Content-based image retrieval (CBIR), especially in network big data analysis, has attracted wide attention. CBIR systems normally search the most similar images to the given query example among a wide range of candidate images. However, human psychology suggests that users concern more about regions of their interest and merely want to retrieve images containing relevant regions, while ignoring irrelevant image areas (such as the texture regions or background). Previous CBIR system on user-interested image retrieval generally requires complicated segmentation of the region from the background. In this paper, we propose a novel hierarchical-local-feature extraction scheme for CBIR, whereas complex image segmentation is avoided. In our CBIR system, a perception-based directional patch extraction method and an improved salient patch detection algorithm are proposed for local features extraction. Then, color moments and Gabor texture features are employed to index the salient regions. Extensive experiments have been performed to evaluate the performance of the proposed scheme, and experimental results show that the developed CBIR system produces plausible retrieval results.

Keywords

Network big data Content-based image retrieval Perception-based directional patch Salient patch detection 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (NSFC) (61601427, 61602229, 61771230); Natural Science Foundation of Shandong Province (ZR2015FQ011, ZR2016FM40); Shandong Provincial Key Research and Development Program of China (NO. 2017CXGC0701); Fostering Project of Dominant Discipline and Talent Team of Shandong Province Higher Education Institutions.

References

  1. 1.
    Alzu’bi A, Amira A, Ramzan N (2015) Semantic content-based image retrieval: a comprehensive study. J Vis Commun Image Represent 32:20–54CrossRefGoogle Scholar
  2. 2.
    Carson C, Belongie S, Greenspan H (2002) Blobworld: image segmentation using expectation-maximization and its application to image querying. IEEE Trans PAMI 24(8):1026–1038CrossRefGoogle Scholar
  3. 3.
    Corel: Image Library University of California, Berkely. http://calphotos.berkeley.edu/use.html#download
  4. 4.
    Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math 41:909–996MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    ElAlami ME (2014) A new matching strategy for content based image retrieval system. Appl Soft Comput 14:407–418CrossRefGoogle Scholar
  6. 6.
    Elleuch N, Ben Ammar A, Alimi AM (2015) A generic framework for semantic video indexing based on visual concepts/contexts detection. Multimed Tools Appl 74(4):1397–1421CrossRefGoogle Scholar
  7. 7.
    Ester M, Kriegel HP, Sander J, Xu X (1996) A density based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland: AAAI Press, pp. 226–231Google Scholar
  8. 8.
    Fauqueur J, Boujemaa N (2002) Region-based retrieval: coarse segmentation with fine signature, IEEE ICIP, Rochester, NY, USAGoogle Scholar
  9. 9.
    Fauqueur J, Boujemaa N (2004) Region-based image retrieval: fast coarse segmentation and fine color description. J Vis Lang Comput 15:69–95CrossRefMATHGoogle Scholar
  10. 10.
    Gao L, Guo Z, Zhang H, Xu X, Shen HT (Sep. 2017) Video captioning with attention-based LSTM and semantic consistency. IEEE Trans Multimed 19(9):2045–2055CrossRefGoogle Scholar
  11. 11.
    Gouet V, Boujemaa N (2001) Object-based queries using color points of interest. IEEE Workshop on Content-based Access of Image and Video Labraries, vol. 1, p 30–36Google Scholar
  12. 12.
    Ground Truth Database: Department of Computer Science and Engineering, University of Washington. http://www.cs.washington.edu/research/imagedatabase/groundtruth/_tars.for.download/
  13. 13.
    Jain AK, Farroknia F (1991) Unsupervised texture segmentation using Gabor filters. Pattern Recogn 24(12):1167–1186CrossRefGoogle Scholar
  14. 14.
    Jian MW, Dong JY (2007) Wavelet-Based Salient Regions and their Spatial Distribution for Image Retrieval, IEEE International Conference on Multimedia & Expo., p 2194–2197, 2–5 JulyGoogle Scholar
  15. 15.
    Jian M, Lam K-M (2014) Face-image retrieval based on singular values and potential-field representation. Signal Process 100:9–15CrossRefGoogle Scholar
  16. 16.
    Jian M, Guo H, Liu L (2009) Texture classification using visual perceptual texture features and Gabor wavelet features. J Comput 4(8):763–770CrossRefGoogle Scholar
  17. 17.
    Jian M, Dong J, Ma J (2011) Image retrieval using wavelet-based salient regions. Imaging Sci J 59(4):219–231CrossRefGoogle Scholar
  18. 18.
    Jian M, Lam K-M, Dong J (2014) Facial-feature detection and localization based on a hierarchical scheme. Inf Sci 262:1–14CrossRefGoogle Scholar
  19. 19.
    Jian M, Lam K-M, Dong J (2014) Illumination-insensitive texture discrimination based on illumination compensation and enhancement. Inf Sci 269:60–72MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jian M, Lam K-M, Dong J, Shen L (2015) Visual-patch- attention-aware saliency detection. IEEE Trans Cybern 45(8):1575–1586CrossRefGoogle Scholar
  21. 21.
    Jiji GW, DuraiRaj PJ (2015) Content-based image retrieval techniques for the analysis of dermatological lesions using particle swarm optimization technique. Appl Soft Comput 30:650–662CrossRefGoogle Scholar
  22. 22.
    Lan R, Zhou Y, Tang YY (2016) Quaternionic local ranking binary pattern: a local descriptor of color images. IEEE Trans Image Process 25(2):566–579MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lau HF, Levine MD (2002) Finding a small number of regions in an image using low-level features. Pattern Recogn 35(11):2323–2339CrossRefMATHGoogle Scholar
  24. 24.
    Liu G, Yang J (2013) Content-based image retrieval using color difference histogram. Pattern Recogn 46(1):188–198CrossRefGoogle Scholar
  25. 25.
    Liu Y, Zhang D, Lu G, Ma WY (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recogn 40(1):262–282CrossRefMATHGoogle Scholar
  26. 26.
    Liu F, Zhang D, Shen L (2015) Study on novel curvature features for 3D fingerprint recognition. Neurocomputing 168(1):599–608CrossRefGoogle Scholar
  27. 27.
    Long F, Zhang HJ, Feng DD (2003) Fundamentals of content-based image retrieval. In: Feng D, Siu WC, Zhang HJ (eds) Multimedia information retrieval and management-technological fundamentals and applications. Springer, BerlinGoogle Scholar
  28. 28.
    Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans PAMI 11(7):674–693CrossRefMATHGoogle Scholar
  29. 29.
    McGill Calibrated Colour Image Database http://tabby.vision.mcgill.ca/html/browsedownload.html
  30. 30.
    Muwei J, Dong J (2007) Combining color, texture and region with objects of user’s interest for content-based image retrieval. Eighth ACIS International Conference on SNPD, p 713–718Google Scholar
  31. 31.
    Pavlidis T (2008) Limitations of content-based image retrieval. ICPR. http://www.theopavlidis.com/technology/CBIR/PaperB/vers3.htm
  32. 32.
    Sander J, Ester M, Kriegel HP et al (1998) Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Min Knowl Disc 2(2):169–194CrossRefGoogle Scholar
  33. 33.
    Sebe N, Lew MS (2003) Comparing salient points detectors. Pattern Recogn Lett 24(1–3):89–96CrossRefMATHGoogle Scholar
  34. 34.
    Sebe N, Tian Q, Loupias E, Lew MS, Huang TS (2001) Content-based Retrieval using Salient Point Techniques, IEEE Conference on Computer Vision and Pattern Recognition (CVPR'01), Technical Demo, Electronic Proceedings, Kauai, HawaiiGoogle Scholar
  35. 35.
    Sebe N, Tian Q, Loupias E, Lew MS, Huang TS (2003) Evaluation of salient point techniques. J Image Vision Comput 21(13–14):1087–1095CrossRefMATHGoogle Scholar
  36. 36.
    Shen L, Bai L (2008) 3D Gabor wavelets for evaluating SPM normalization algorithm. Med Image Anal 12(3):375–383CrossRefGoogle Scholar
  37. 37.
    SIMPLIcity Image Database: http://wang.ist.psu.edu/docs/related/
  38. 38.
    J. Song, Lianli Gao, Xiaofeng Zhu, Nicu Sebe (2017) Quantization based hashing: a general framework for scalable image and video retrieval. Pattern RecognGoogle Scholar
  39. 39.
    Song J, He T, Gao L, Xu X, Shen H (2018) Deep region hashing for efficient large-scale instance search from images. AAAIGoogle Scholar
  40. 40.
    Sudhakar MS, Bagan KB (2014) An effective biomedical image retrieval framework in a fuzzy feature space employing phase congruency and GeoSOM. Appl Soft Comput 22:492–503CrossRefGoogle Scholar
  41. 41.
    Taylor JR (1997) An introduction to error analysis, 2nd edn. University Science Books, Sausolito, CaliforniaGoogle Scholar
  42. 42.
    Tian Q, Sebe N, Loupias E, Lew MS, Huang TS (2001) Image retrieval using wavelet-based salient points. J Electron Imaging 835–849Google Scholar
  43. 43.
    Tsai HH, Chang BM, Liou SH (2014) Rotation-invariant texture image retrieval using particle swarm optimization and support vector regression. Appl Soft Comput 17:127–139CrossRefGoogle Scholar
  44. 44.
    Vieux R, Benois-Pineau J, Domenger J-P (2012) Content based image retrieval using bag-of-regions, 18th International Conference, MMM 2012, Klagenfurt, Austria, January 4–6, pp. 507–517Google Scholar
  45. 45.
    Walia E, Pal A (2014) Fusion framework for effective color image retrieval. J Vis Commun Image Represent 25(6):1335–1348CrossRefGoogle Scholar
  46. 46.
    Wang Q, Yuan Y, Yan P, Li X (2013) Visual saliency by selective contrast. IEEE Trans Circ Syst Vid Technol 23(7):1150–1155CrossRefGoogle Scholar
  47. 47.
    Wang Q, Yuan Y, Yan P, Li X (2013) Saliency detection by multiple-instance learning. IEEE Trans Cybern 43(2):660–672CrossRefGoogle Scholar
  48. 48.
    Wang Q, Wan J, Yuan Y (2018) Locality constraint distance metric learning for traffic congestion detection. Pattern Recogn 75:272–281CrossRefGoogle Scholar
  49. 49.
    Wang X, Gao L, Wang P, Sun X, Liu X (2018) Two-stream 3D convNet fusion for action recognition in videos with arbitrary size and length. IEEE Trans Multimed 20(3):634–644CrossRefGoogle Scholar
  50. 50.
    Wang J, Zhang T, Song J, Sebe N, Shen H (2018) A survey on learning to hash. IEEE Trans Pattern Anal Mach Intell 40(4):769–790CrossRefGoogle Scholar
  51. 51.
    Wang Q, Wan J, Yuan Y Deep metric learning for crowdedness regression. IEEE Trans. Circ Syst Vid Technol.  https://doi.org/10.1109/TCSVT.2017.2703920
  52. 52.
    Xu Y-Y (2016) Multiple-instance learning based decision neural networks for image retrieval and classification. Neurocomputing 171:826–836CrossRefGoogle Scholar
  53. 53.
    Yang M, Zhu P, Liu F, Shen L (2015) Joint representation and pattern learning for robust face recognition. Neurocomputing 168(30):70–80CrossRefGoogle Scholar
  54. 54.
    Zhu Z, Jia S, He S, Sun Y, Ji Z, Shen L (2015) Three-dimensional Gabor feature extraction for hyperspectral imagery classification using a memetic framework. Inf Sci 298(1):274–287CrossRefGoogle Scholar
  55. 55.
    Zhu Y, Jiang J, Han W, Ding Y, Tian Q (2017) Interpretation of users’ feedback via swarmed particles for content-based image retrieval. Inf Sci 375:246–257CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Muwei Jian
    • 1
  • Yilong Yin
    • 2
  • Junyu Dong
    • 3
  • Kin-Man Lam
    • 4
  1. 1.School of Computer Science and TechnologyShandong University of Finance and EconomicsJinanChina
  2. 2.School of Software EngineeringShandong UniversityJinanChina
  3. 3.Department of Computer Science and TechnologyOcean University of ChinaQingdaoChina
  4. 4.Centre for Signal Processing, Department of Electronic and Information EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong

Personalised recommendations