Skip to main content
Log in

Super-resolution via supervised classification and independent dictionary training

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Super-resolution (SR) reconstruction plays an important role in recovering the image details and improving the visual perception. In this paper, we propose a new and effective method based on the idea of classification reconstruction and independent dictionary training. Firstly, we extract some geometric features of images and design a new supervised classification method, which uses the decision tree to guarantee a better classification result. Secondly, the coefficients of the high-resolution (HR) and low-resolution (LR) patches are not equal strictly in fact, which enlighten us to train the HR and LR dictionaries independently. And then mapping matrices are learned to map LR coefficients into HR coefficients, which can not only help us improve reconstruction quality, but also just perform sparse coding one time in the reconstruction stage. At last, we enforce a global optimization on the initial reconstruction HR image based on the non-local means and the auto-regressive model. The experiments show that the method we proposed works better than other classic state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322

    Article  Google Scholar 

  2. Allebach J, Wong PW (1996) Edge-directed interpolation. International conference on image processing, 1996. Proceedings IEEE Xplore, vol 3, pp 707–710

  3. Bevilacqua M, Roumy A, Guillemot C, Alberi Morel M-L (2012) Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: BMVC, Guildford, pp 1–10

  4. Chang H, Yeung DY, Xiong Y (2004) Super-resolution through neighbor embedding. Computer vision and pattern recognition, 2004. CVPR 2004. Proceedings of the 2004 I.E. computer society conference on IEEE Xplore, vol 1, pp I-275-I-282

  5. Dai S et al (2009) SoftCuts: a soft edge smoothness prior for color image super-resolution. IEEE Trans Image Process Publ IEEE Signal Process Soc 18(5):969–981

    MathSciNet  MATH  Google Scholar 

  6. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. Computer vision and pattern recognition, 2005. CVPR 2005. IEEE computer society conference on IEEE, pp 886–893

  7. Dong C, Chen CL, He K, Tang X (2014) Learning a deep convolutional network for image super-resolution. In: Proceedings of European Conference on Computer Vision (ECCV). Springer, Cham, pp 184–199

    Google Scholar 

  8. Dong W et al (2011) Sparsity-based image denoising via dictionary learning and structural clustering. IEEE conference on computer vision and pattern recognition IEEE computer society, pp 457–464

  9. Dong W et al (2011) Image Deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans Image Process Publ IEEE Signal Process Soc 207:1838–1857

    Article  MathSciNet  Google Scholar 

  10. Dong C, Loy CC, He K, Tang X (2016) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307

    Article  Google Scholar 

  11. Ducournau A, Fablet R (2016) Deep learning for ocean remote sensing: an application of convolutional neural networks for super-resolution on satellite-derived SST data. 2016 9th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS). Cancun, pp 1–6

  12. Edelman A (1988) Eigenvalues and condition numbers of random matrices. SIAM J Matrix Anal Appl 9(4):543–560

    Article  MathSciNet  Google Scholar 

  13. Feng XG, Milanfar P (2003) Multiscale principal components analysis for image local orientation estimation. In: Proceedings of the 36th Asilomar Conference on Signals, Systems and Computers. University of California, Santa Cruz, pp 478–482

  14. Freeman WT, Jones TR, Pasztor EC (2002) Example-based super-resolution. Comput Graph Appl IEEE 22(2):56–65

    Article  Google Scholar 

  15. Huang J, You X, Yuan Y, Yang F, Lin L (2010) Rotation invariant iris feature extraction using Gaussian Markov random fields with non-separable wavelet. Neurocomputing 73(4):883–894

    Article  Google Scholar 

  16. Jiang J et al (2016) Noise robust position-patch based face super-resolution via Tikhonov regularized neighbor representation. Inf Sci 367–368:354–372

    Article  Google Scholar 

  17. Jiang J et al (2016) Single image super-resolution via locally regularized anchored neighborhood regression and nonlocal means. IEEE Trans Multimedia 19(1):15–26

    Article  Google Scholar 

  18. Jiang J, Chen C, Ma J, Wang Z, Wang Z, Hu R (2017) SRLSP: a face image super-resolution algorithm using smooth regression with local structure prior. IEEE Trans Multimedia 19(1):27–40

    Article  Google Scholar 

  19. Li X, Orchard MT (2001) New edge-directed interpolation. IEEE Trans Image Process Publ IEEE Signal Process Soc 10(10):1521–1527

    Google Scholar 

  20. Liu H, Han J, Hou S, Shao L, Ruan Y (2017) Single image super-resolution using a deep encoder-decoder symmetrical network with iterative back projection. Neurocomputing 282:52–59

    Article  Google Scholar 

  21. Lowe DG (2004) Distinctive image features from scale-invariant Keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  22. Mairal J, Sapiro G, Elad M (2008) Learning multiscale sparse representations for image and video restoration (PREPRINT). Siam J Multiscale Model Simul 7(1):214–241

    Article  Google Scholar 

  23. Protter M, Elad M, Takeda H, Milanfar P (2009) Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Trans Image Process Publ IEEE Signal Process Soc 18(1):36–51

    Article  MathSciNet  Google Scholar 

  24. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  25. Rubinstein R, Zibulevsky M, Elad M (2008) Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. Cs Technion 40(8):1–15

  26. Sun J, Xu Z, Shum HY (2008) Image super-resolution using gradient profile prior. Computer vision and pattern recognition, 2008. CVPR 2008. IEEE Conference on IEEE, pp 1–8

  27. Takeda H, Farsiu S, Milanfar P (2007) Kernel regression for image processing and reconstruction. IEEE Trans Image Process 16(2):349–366

    Article  MathSciNet  Google Scholar 

  28. Timofte R, De V, Gool LV (2013) Anchored neighborhood regression for fast example-based super-resolution. IEEE international conference on computer vision IEEE, pp 1920–1927

  29. Timofte R, Smet VD, Gool LV (2014) A+: adjusted anchored neighborhood regression for fast super-resolution. Lect Notes Comput Sci 9006:111–126

    Article  Google Scholar 

  30. Uiboupin T, Rasti P, Anbarjafari G, Demirel H (2016) Facial image super resolution using sparse representation for improving face recognition in surveillance monitoring. 2016 24th Signal Processing and Communication Application Conference (SIU). Zonguldak, pp 437–440

  31. Wang YH, Li JB, Fu P (2012) Medical image super-resolution analysis with sparse representation. Eighth international conference on intelligent information hiding and multimedia signal processing IEEE computer society, pp 106–109

  32. Wang S et al (2012) Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis. IEEE Conference on Computer Vision and PatternRecognition, Providence, RI 157(10):2216–2223

  33. Wang L, Lu K, Liu P (2015) Compressed sensing of a remote sensing image based on the priors of the reference image. IEEE Geosci Remote Sens Lett 12(4):736–740

    Article  Google Scholar 

  34. Wang Z, Yang Y, Wang Z, Chang S, Yang J, Huang TS (2015) Learning super-resolution jointly from external and internal examples. IEEE Trans Image Process Publ IEEE Signal Process Soc 24(11):4359–4371

    Article  MathSciNet  Google Scholar 

  35. Wang Z, Liu D, Yang J, Han W, Huang T (2015) Deep networks for image super-resolution with sparse prior. 2015 I.E. International Conference on Computer Vision (ICCV). Santiago, pp 370–378

  36. Xu J, Qi C, Chang Z (2015) Coupled K-SVD dictionary training for super-resolution. IEEE international conference on image processing IEEE, pp 3910–3914

  37. Yang J et al (2008) Image super-resolution as sparse representation of raw image patches. Computer vision and pattern recognition, 2008. CVPR 2008. IEEE Conference on IEEE, pp 1–8

  38. Yang J et al (2010) Image super-resolution via sparse representation. IEEE Trans Image Process Publ IEEE Signal Process Soc 19(11):2861–2873

    Article  MathSciNet  Google Scholar 

  39. Yang S et al (2011) Novel super resolution restoration of remote sensing images based on compressive sensing and example patches-aided dictionary learning. International workshop on multi-platform/multi-sensor remote sensing and mapping IEEE, pp 1–6

  40. Yang S, Liu Z, Wang M, Sun F, Jiao L (2011) Multitask dictionary learning and sparse representation based single-image super-resolution reconstruction. Neurocomputing 74(17):3193–3203

    Article  Google Scholar 

  41. Yang J et al (2012) Coupled dictionary training for image super-resolution. IEEE Trans Image Process Publ IEEE Signal Process Soc 21(8):3467–3478

    Article  MathSciNet  Google Scholar 

  42. Yang S, Wang M, Chen Y, Sun Y (2012) Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding. IEEE Trans Image Process Publ IEEE Signal Process Soc 21(9):4016–4028

    Article  MathSciNet  Google Scholar 

  43. Yang X, Zhant S, Hu C, Liang Z, Xie D (2016) Super-resolution of medical image using representation learning. 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP). Yangzhou, pp 1–6

  44. Yang W et al (2016) Consistent coding scheme for single-image super-resolution via independent dictionaries. IEEE Trans Multimedia 18(3):1–1

    Article  Google Scholar 

  45. Yuan T et al (2014) Image super-resolution via kernel regression of sparse coefficients. IEEE international conference on acoustics, speech and signal processing IEEE, pp 5794–5798

  46. Zeyde R, Elad M, Protter M (2010) On single image scale-up using sparse-representations. International conference on curves and surfaces Springer-Verlag, pp 711–730

  47. Zhang D, Wu X (2006) An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans Image Process 15(8):2226–2238

    Article  Google Scholar 

  48. Zhang K et al (2013) Image super-resolution via non-local steering kernel regression regularization. IEEE international conference on image processing IEEE, pp 943–946

  49. Zhang K et al (2015) Learning multiple linear mappings for efficient single image super-resolution. IEEE Trans Image Process Publ IEEE Signal Process Soc 24(3):846–861

    Article  MathSciNet  Google Scholar 

  50. Zhang Y et al (2015) CCR: clustering and collaborative representation for fast single image super-resolution. IEEE Trans Multimedia 18(3):1–1

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China under Project code (61672202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Wang, Q., Yang, J. et al. Super-resolution via supervised classification and independent dictionary training. Multimed Tools Appl 77, 27709–27732 (2018). https://doi.org/10.1007/s11042-018-5950-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5950-4

Keywords

Navigation